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ABSTRACT

EAU CLAIRE DE LA LUNE: CLARIFYING THE ORIGIN

AND DISTRIBUTION OF WATER ON THE MOON

CHRISTIAN J. TAI UDOVICIC

Water is an essential resource to life as we know it. On the Moon, water is scarce and should not be able to

survive on its harsh airless surface. However, several spacecraft measurements and samples returned from

the Moon indicate that water exists across the entire lunar surface. There is active debate surrounding

the origin, location, and abundance of water on the Moon. Using a three-pronged approach centered on

spacecraft observations and computational modeling, the work presented here seeks to answer fundamental

questions about where water is found on the Moon and how it got there. One hypothesis suggests that water

could be produced by space weathering, the combination of processes that alter the lunar surface due to

its exposure to space. I use spacecraft imagery to investigate the rate of space weathering on the Moon to

investigate it as a possible source of lunar hydration. I then test whether the spacecraft-observed widespread

hydroxyl (OH) / water (H2O) signature migrates across the surface daily. Finally, I update a simulation of

ice delivery to the lunar polar regions to predict where and how deep ancient ice may be buried near the

south pole. I find that space weathering alters the lunar surface at a predictable rate for the first 1 billion

years of exposure to space. However, the widespread OH / H2O signature is inherent, or develops on much

shorter timescales, and I find no evidence of its daily migration. Finally, I show that the majority of ice that

may be buried near the poles has likely been disrupted by impact events and that any remaining ice is most

likely 10s to 100s of meters below the surface. I discuss these findings in the context of active and future

lunar space exploration. With a new era of lunar exploration on the horizon, the three investigations herein

provide key constraints on the origin and distribution of water on the Moon.
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Chapter 1

Introduction

Water is essential to life as we know it. Thus far, Earth is unique in its water diversity, being the only

Solar System object where water naturally exists on the surface and in the atmosphere in its three main

phases: ice (solid), water (liquid), and vapor (gas). However, as we explore more of the Solar System, we

continue to find water in a variety of phases and in unexpected places. Water ice is found at the poles of

Mercury, water vapor erupts from Enceladus in plumes, and a liquid water mantle on Pluto likely drives

the motion of its icy crust. Once thought a rarity, we now know that water was one of the first molecules

that formed in the outer Solar System 4.5 billion years ago. As the planets formed and migrated to their

current positions, icy asteroids and comets were flung throughout the Solar System, from Mercury to the

furthest reaches of the Oort Cloud. These icy projectiles are thought to have delivered most of the water

on Earth and, as our closest neighbor, the Moon would have accumulated a significant amount of water as

well. Unfortunately, the Moon lacks a protective atmosphere and global magnetic field to protect its water

from rapidly escaping to space and is therefore mostly dry. However, interest in lunar water has surged in

the last decade following the discovery of buried water ice revealed by the first impact experiment into a

lunar crater near the south pole. Recent spacecraft missions have also revealed surprising water signatures

in direct sunlight across most of the lunar surface where it should be much too warm for surface water to

survive for long. As a result, there is now significant debate about how much water exists on the harsh lunar

surface, how it survives, and where it originated. Tracking down the source of the lunar water could help us

understand how water came to be so abundant on Earth. Determining the location and abundance of water

on the Moon could revolutionize space exploration since the hydrogen and oxygen that make up H2O can

be repurposed as rocket propellant, making the Moon a potential launchpad for further space exploration.

As we prepare to return humans to the Moon for the first time in five decades, it is critical to understand

how much water is on the Moon and where it is located.

Fundamental unanswered questions about water on the Moon could be keys to understanding the history

of water on Earth, while preparing us for future exploration in space. Did lunar water come from the same
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source as water on Earth? How much water is on the Moon and can it be used in future human exploration?

Is lunar water restricted to the polar regions or is it spread across the entire surface? In this dissertation,

I sought to answer these questions to better understand the origin and abundance of water on the lunar

surface. With a wealth of recent spacecraft imagery of the Moon combined with unprecedented ease of access

to computation power, it is now possible to study the lunar surface in greater detail and with much greater

data volumes than ever before. In this work, I combine spacecraft observations, computational modeling,

and statistical analysis to explore key outstanding mysteries about water on the Moon.

1.1 The Lunar Surface

Figure 1.1: An astronaut footprint photographed

with a 70 mm camera during the Apollo 11 mission

(NASA Photo AS11-40-5878).

The lunar surface is an excellent laboratory for un-

derstanding the historical and present-day space en-

vironment in the Earth’s planetary neighborhood.

The Moon lacks many of the major drivers of surface

change that are encountered on Earth, including liq-

uid water, wind, plate tectonics, and it has not seen

major volcanic activity for many millions to billions

of years. As such, the heavily cratered lunar sur-

face is an alien landscape compared to Earth, where

terrestrial erosion and crustal recycling over billions

of years have erased nearly all evidence of impact

craters. Global change on the Moon is primarily

due to its lack of a protective atmosphere and global

magnetic field, leaving its surface exposed to solar

irradiation and meteor impacts which have shaped

on the surface over time. Over billions of years of meteor impacts, the rocky lunar crust has been pulverized

into tiny rock fragments known in aggregate as regolith. The lunar regolith blankets virtually the entire sur-

face and is estimated to be at least several meters thick globally. Individual grains of regolith are typically

less than 1 mm in size, with most being less than 100 µm, making these rock fragments even finer than

household baking flour (∼200 µm). Regolith grains are irregularly shaped and loosely stacked, making the

lunar surface very low in density. It is also highly compressible, meaning an astronaut’s boot easily makes

a footprint, but does not sink through (Figure 1.1). Though it appears visually similar to terrestrial soil,

lunar regolith has no organic material or soil moisture, making it a unique material with different physical
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properties than any dust, sand or rock found on Earth. In this work, unique regolith optical properties (how

it interacts with visible light) are central to using spacecraft observations to understand how quickly the

regolith evolves over time (chapter 2). Accounting for unique regolith thermal properties is also critical to

understanding global lunar water signatures (chapter 3) and to estimate the amount of heat required to melt

ice during impact events at the poles (chapter 4).

Figure 1.2: The full Moon photographed on the

trip back from the Moon during the Apollo 11 mis-

sion. Light toned areas are the lunar highlands, while

darker areas are the lunar maria (NASA Photo AS11-

44-6667).

The lunar regolith can be divided into two main

types which are found in the two primary terrains on

the Moon, the highlands and themaria. Easily iden-

tifiable by-eye on a clear night, the lunar highlands

are the lighter-toned (higher albedo) parts of the

surface which represent the original lunar crust (c.

4.3 Ga; Figure 1.2). Early in lunar history, a global

magma ocean covered the entire surface and its slow

cooling led to lighter-toned, less dense minerals crys-

tallizing early and floating to the surface to form the

lighter rocks of the lunar highlands. Highlands rock

is primarily anorthosite which is described as fel-

sic due to its high silica content. Lunar anorthosite

contains minerals like the calcium-aluminum silicate

anorthite (the calcium-rich variety of plagioclase),

and the iron-magnesium silicates orthopyroxine and

olivine. By contrast, the maria are the darker (lower albedo) regions of the Moon that formed from denser

magma which erupted onto the surface after the highlands crust was formed (c. 3.2–2.8 Ga; Figure 1.2).

The maria are composed of basalt which is mafic due to its lower silica content. Like the highlands, mare

basalts also contain anorthite and olivine, but they differ in their inclusion of clinopyroxine (a calcium-

iron-magnesium silicate) and the addition of the dark iron-titanium oxides, ilmenite and spinel. Since iron

absorbs large amounts of visible light, relatively small amounts of ilmenite and spinel cause basalt to be much

darker than anorthosite, allowing us to tell the lighter highlands from the darker maria at a glance. The

availability of iron in the regolith also determines how quickly the regolith is altered by space weathering,

which is discussed in chapter 2.
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1.2 Space Weathering

Space weathering describes how airless surfaces are continuously altered due to their direct exposure to space.

The main space weathering processes on the Moon are solar wind irradiation, micrometeorite bombardment,

and galactic cosmic radiation. Space weathering operates at the regolith grain scale (<10s of micrometers),

where micrometeorites can melt and vaporize individual crystalline mineral grains which then rapidly cool

into non-crystalline (amorphous) glass or weld together into heterogenous agglutinates (Figure 1.3). The

solar wind can alter regolith grains on the molecular level, removing atoms and molecules through sputtering

while implanting hydrogen and helium ions that can react with or become trapped in irregular crystal defect

sites introduced by space weathering. Galactic cosmic rays penetrate deeper into the surface, leaving tracks

of damage to crystalline mineral grains encountered along the way. Samples collected on the Moon during

the Apollo missions have been dated by the number of cosmic ray tracks visible in the regolith, a proxy

for exposure time near the surface. When sorted by cosmic ray exposure age, predictable trends in regolith

optical properties emerge.

Figure 1.3: Left: A scanning electron microscope image of a lunar agglutinate from Apollo regolith

sample 10084 (NASA Photo S87-38811). Right: A scanning electron microscope image of a thin section of

a lunar agglutinate. White spots are smFe0 (NASA Photo S87-38816). Detail of Lunar Sourcebook Figure

7.2 McKay et al. (1972).

Regolith optical properties change as a function of surface exposure age from immature (younger) to

mature (older). Mature regolith has been at or near the sufrace the longest and tends to be lower in albedo

(reflectivity), causing it to appear darker than immature regolith. Mature regolith also has a “redder”

spectral slope (lower reflectance at lower wavelength) than immature regolith in the visible to near-infrared

part of the spectrum. These changes in optical properties are attributed to the formation of small particles

of pure iron known as submicroscopic iron (smFe0). Ranging in size from nanophase iron (<40 nm) to

microphase iron (40 nm–1 µm), these tiny iron particles can be found on the rims of individual regolith
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grains or in heavily melted and glassy agglutinates (Figure 1.3). Despite their small size, these particles

drastically change the appearance of the lunar surface to the extent that their effects are visible with the

naked eye. When looking at the lunar surface, bright rays around lunar craters are due to immature

regolith being excavated from the shielded subsurface and spreading over top of the darker, mature regolith

which blankets most of the lunar surface (Figure 1.4). Over time, space weathering produces smFe0 in the

newly exposed immature regolith, causing the rays to gradually fade into the background mature regolith.

The accumulation of smFe0 is observable in optical spacecraft data and the gradual maturation of regolith

excavated near young lunar craters is used to track the rate of space weathering in chapter 2.

Figure 1.4: Apollo 17 photograph of Bandfield crater, a young 1 km crater on the eastern limb of the

Moon. Bright ejecta rays show recently excavated regolith which is still immature, i.e. it has not yet been

exposed to space weathering long enough to darken and fade into the background mature regolith (NASA

Photo AS17-P-2889).
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1.3 Lunar Polar Water

Although the Moon is mostly devoid of water (H2O), several independent investigations have found direct

evidence for H2O within cold permanently shadowed regions at the lunar poles. Unlike the Earth, the Moon

has very little axial tilt (obliquity ∼6.7°) and negligible precession, therefore the Sun rises directly above the

lunar equator (±6.7° latitude), regardless of the season. This means that the lunar poles never point directly

towards or away from the Sun. From the perspective of the poles, the Sun remains low on the horizon

throughout the lunar day. A steep-sided, roughly circular impact crater near the pole will cast a shadow

on its own floor regardless of the time of day or season. We call this type of area a permanently shadowed

region (PSR) since it never receives direct sunlight.

Surprisingly, shadows on the Moon are much darker and much colder than shadows we typically find

on Earth. This is due to the lack of atmosphere which scatters some light and transfers some heat into

shadows on Earth. Without atmospheric scattering, there is a complete lack of sunlight s (except perhaps

light scattered off nearby lit surfaces), allowing PSRs to remain very cold. The Diviner Lunar Radiometer

aboard the Lunar Reconnaissance Orbiter (LRO) has measured PSR temperatures as low as 60 K (-213°

C), among the lowest temperatures ever recorded in nature (Paige et al., 2010a). Since PSRs remain very

cold for very long periods of time - perhaps millions to billions of years - they have long been hypothesized

to host water ice. Any water vapor encountering the extremely cold PSR temperatures would immediately

condense into ice and become trapped since the temperatures never rise high enough to re-vaporize the ice.

Regions which are permanently too cold to allow water or other volatiles to escape are called cold traps

and these lunar cold traps have long been studied as potential hosts of lunar water ice (Watson et al., 1961;

Arnold, 1979). It was then surprising when radar observations of the lunar poles failed to find any evidence

of ice (Stacy et al., 1997; Campbell et al., 2006), especially given that massive polar ice deposits are found

on Mercury (Moses et al., 1999), where the airless surface conditions are similar to those of the Moon.

In the intervening years, new evidence from several direct and indirect methods of detecting water have

confirmed that water exists at the surface of polar PSR cold traps, but in much smaller quantities than at

the poles of Mercury. Spacecraft observations using visible to near-infrared spectroscopy (Li et al., 2018),

ultraviolet spectroscopy (Gladstone et al., 2012; Hayne et al., 2015), albedo (Fisher et al., 2017), and neutron

spectroscopy (Miller et al., 2012; Lawrence et al., 2006) showed signatures associated with trace amounts of

H2O or enhanced hydrogen on PSR surfaces. However, the surface ice detected in these studies is patchy and

much less extensive than the deposits found at the poles of Mercury. Recent studies have suggested that H2O

is removed from PSRs much more quickly than it is delivered which may explain their patchy appearance.

For example, ice can be eroded due to space weathering due to the deflection of the solar wind into PSRs,
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Figure 1.5: The south polar region of the Moon as seen by the Lunar Reconnaissance Orbiter Camera

(Robinson et al., 2010). Several of the labelled craters, including Shackleton nearest to the pole, contain

permanently shadowed regions (PSRs) which remain dark throughout the lunar day. The Lunar Crater

Observation and Sensing Satellite (LCROSS) impact site into the Cabeus PSR is indicated in the upper left

quadrant. The NASA Artemis program has targeted 84°–90° S as its target for upcoming human and robotic

missions. This mosaic was generated by NASA/GSFC/ASU (https://www.lroc.asu.edu/posts/237).
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or by micrometeorite bombardment which affects the lunar surface from all directions (Farrell et al., 2019).

Additionally, impact gardening, the continual churning of the regolith by impacts of all sizes, is thought to

expose buried ice much more quickly than it buries it, exposing it to surface erosion (Costello et al., 2021).

While these processes may explain the lack of ice in lunar PSRs, the massive ice deposits at Mercury remain

a mystery. Some have suggested that a comet or hydrated asteroid impact at Mercury filled its poles with

ice relatively recently and that they will eventually fade to the patchy state that we observe on the Moon

(Deutsch et al., 2019). Alternatively, it is possible that the lunar PSRs are younger than previously thought

and that the Moon experienced a large swing in its obliquity as it approached its current stable orbit (Siegler

et al., 2015; Farhat et al., 2022). If this is the case, ancient water ice delivered early in lunar history would

have been quickly lost to space with no permanently shadowed cold traps to store it.

Since there appear to be no massive surface ice deposits at the lunar poles, recent studies have begun

the search for ice in the subsurface. Direct evidence for buried water ice came during the Lunar Crater

Observation and Sensing Satellite (LCROSS) experiment (Schultz et al., 2010) which impacted a used rocket

booster into Cabeus crater, a PSR near the lunar south pole (Figure 1.6). The impact ejecta plume contained

a quantity of H2O consistent with 150 kg water ice buried up to 6–10 m below the PSR (Colaprete et al.,

2010; Luchsinger et al., 2021). Other studies have used indirect means to detect buried ice more broadly

using surface elevation and roughness data (Deutsch et al., 2020), crater shape (Rubanenko et al., 2019) and

updated orbital radar measurements (Spudis et al., 2013; Patterson et al., 2017). While these studies found

signs of buried ice, it is still unclear what quantity of ice is buried below the PSRs and at what depths. To

attempt to answer this question, Cannon et al. (2020) developed a computational model which tracked the

sources of ice throughout lunar history and their delivery to individual cold traps. This model accounted for

gradual loss of ice at the surface, but allowed ice to be buried and preserved beneath the ejecta of nearby

impact craters. Their results showed potential for very large ice deposits at depth below several PSRs, with

size estimates in the gigatons. In chapter 4, I update the Cannon et al. (2020) model with several key

processes and more recent estimates of ice delivery and loss rates. With my updated model, I predict the

location, depth, and quantity of water ice in PSR cold traps in the lunar south polar region.

1.4 Widespread Lunar Water

Outside the PSRs, the vast majority of the lunar surface experiences large daily temperature swings, with

typical daytime temperatures in the range of 300–400 K, much warmer than the sub-110 K temperatures

needed to trap water ice at the extremely low surface pressures on the Moon (Schorghofer & Williams, 2020;

Landis et al., 2022). It was then surprising when three independent spacecraft discovered evidence of water on
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Figure 1.6: Artist rendition of the LCROSS spacecraft and Centaur rocket shortly after separation

(NASA; https://www.nasa.gov/mission_pages/LCROSS/overview). The Centaur rocket impact into

Cabeus crater in October 2009 provided the first direct evidence of buried water ice at the lunar poles

(Colaprete et al., 2010).

the daylit side of the Moon. Referred to here as the widespread lunar water signature, it was detected by the

Deep Impact extended mission (EPOXI), the Moon Mineralogy Mapper (M3) instrument aboard the Indian

Space Research Organisation (ISRO) Chandrayaan-1 spacecraft, and Cassini during a fly-by on its way to

Saturn (Sunshine et al., 2009; Pieters et al., 2009; Clark et al., 2011). The three spacecraft observed the

Moon with near-infrared spectrometers, specifically at a wavelengths of 2.8 µm and 3 µm, where hydroxyl

(OH) and water (H2O) tend to absorb light, respectively (Farmer, 1974). All three spacecraft observed

a dip in near-infrared reflectance in the 2.8–3 µm region, consistent with OH / H2O on the lunar surface.

However, these observations were unable to distinguish OH from H2O since the 2.8 µm and 3 µm features can

overlap when OH / H2O is attached to various metals in the poorly crystalline lunar surface (Stolper, 1982;

Starukhina, 2001; McIntosh et al., 2017; McLain et al., 2021). However, these observations were suggested

to be water rather than hydroxyl based on the diurnal variation in the 2.8–3 µm feature; the feature was

concentrated in the early morning, late afternoon, and at high latitudes where the surface is cooler. The

implication was that water on the lunar surface could be heated off of the surface during the day and then

migrate until it reached somewhere cooler to come to rest. These observations were later corroborated by
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observations by the Lyman Alpha Mapping Project (LAMP) mission which also showed diurnal variation

of far-UV spectra associated with hydration (Hendrix et al., 2019). The prospect of daily migrating water

was exciting due to the relative ease with which future missions could extract and possibly use it - simply

expose regolith to sunlight in the morning and collect the water that emerges. However, these observations

have been debated in the intervening years and the source of the widespread lunar OH / H2O feature is still

an open question.

Interpreting the 2.8–3 µm feature is particularly challenging on the Moon due to the unique lunar thermal

environment. The near-infrared part of the spectrum marks a transition from primarily reflected solar light

to primarily thermally emitted radiation, which are approximately equal in magnitude at lunar daytime

temperatures (see chapter 3, Figure 3.1). To accurately interpret the 2.8–3 µm reflectance feature, the

thermal emission (governed by surface temperature) must be removed from the spectrum. If the surface

temperature is over-predicted or under-predicted, the apparant shape and size of the 2.8–3 µm OH / H2O

feature can vary drastically. This is why several follow-up investigations of the widespread OH / H2O feature

have conflicted in their interpretation of the 2.8–3 µm signature, with some reporting daily migrating H2O

(Li & Milliken, 2017), completely stationary OH (Bandfield et al., 2018), and some combination of static and

migrating OH / H2O (Wöhler et al., 2017). In chapter 3, I discuss how the roughness of the lunar surface

is a further complicating factor influencing the widespread OH / H2O feature and present a thermal model

capable of predicting 2.8–3 µm temperatures while accounting for roughness.

More recently, new observations of the Moon in the infrared have shown diagnostic evidence of H2O

(and not just OH) widespread on the sunlit lunar surface. These observations were collected by the Earth-

based Stratospheric Observatory for Infrared Astronomy (SOFIA) mission, a Boeing 747SP airplane with a

mounted infrared telescope capable of taking high altitude observations where the atmosphere is thin and

water vapor is less likely to bias measurements (Young et al., 2012). Using this telescope to observe the Moon,

Honniball et al. (2020) found unambiguous evidence of H2O on the daylit lunar surface. These observations

used the infrared 6 µm emission feature which is only associated with H2O and not OH. Multiple SOFIA

observations at different local times have shown that the H2O content remains static throughout the lunar

day (Honniball et al., 2022). Taken in combination with the previous observations at 2.8–3 µm, it appears

that at least some or all of the widespread OH / H2O feature is due to H2O. However, the mounting evidence

that OH / H2O can survive the harsh lunar thermal and space weathering environment raises important

questions about how these molecules are so strongly attached to the surface or sequestered in individual

regolith grains.
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1.5 Water and Hydroxyl in the Lunar Regolith

While no samples have yet been collected from the lunar polar regions, the Apollo sample collection and

laboratory experiments on regolith analogs yield clues about the source(s) of the widespread OH / H2O

feature. Several sample studies have found OH / H2O trapped in primary minerals of the lunar crust or in

volcanic glasses. These observations suggest an “endogenic” source (i.e., from the lunar interior; McCubbin

et al. 2010; Saal et al. 2008; Liu et al. 2022). In particular, the recent surface observations and samples

returned by the Chang’E 5 mission show a compelling link between the OH / H2O feature observed on

the surface and hydroxylated apatite grains, suggesting the widespread “water” feature is best explained by

hydroxyl (OH) from indigenous sources. However, other sample studies have found OH and H2O signatures

associated with “exogenic” sources like space weathering. An early study by Housley et al. (1973) proposed

that micrometeorite bombardment would liberate oxygen from minerals, producing similar amounts of smFe0

and H2O in the regolith. Recent observations of lunar regolith samples returned by the Apollo missions

found that micrometeorite bombardment can trap OH in impact glasses, but the link to smFe0 is unclear

(Liu et al., 2012). That study also found evidence that the OH in glassy agglutinates is linked to the

solar wind, indicating that both major space weathering processes (micrometeorite bombardment and solar

wind irradiation) could play a role in trapping OH on the lunar surface. Several processes have also been

shown to produce or liberate H2O from regolith analogs. For example, dry regolith analogs irradiated with

solar wind ions release water when heated by micrometeorite-like laser pulses (Zhu et al., 2019). A related

experiment showed that trace amounts of OH and H2O are trapped within the solar wind irradiated coatings

of individual lunar regolith grains, suggesting that the solar wind can sequester OH / H2O independently

of micrometeorite bombardment (Bradley et al., 2014). Other laboratory experiments on regolith analogs

have shown that the solar wind can damage the crystal structure of lunar minerals, producing sites where

solar wind hydrogen can react and form OH bonds within crystal defect sites (Igami et al., 2021). Each of

these formation mechanisms suggest that space weathering could be an important process in the generation

of surface OH / H2O, and could contribute to the widespread 2.8–3 µm feature. At present, it is unclear

if endogenic or exogenic sources dominate lunar OH / H2O or how much H2O, if any, is liberated from the

surface on human timescales. By constraining the rate that space weathering alters the lunar regolith in

chapter 2 and the variability of the 2.8–3 µm OH / H2O in chapter 3, I investigate the source, distribution,

and daily behavior of water on the lunar surface.
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1.6 Methodological Approach

Note: Each manuscript chapter contains detailed descriptions of methods used for the work therein. Here, I

provide a brief summary of the primary data and methods used in this work.

Core questions about lunar water remain unanswered, but an abundance of data from many recent

spacecraft missions present an opportunity to glean new insights. In this work, I use spacecraft data from

three different instruments on three separate spacecraft which each imaged the Moon in distinct wavelengths

of light. In chapter 2, I use global maps of the lunar surface derived from the Japan Aerospace Exploration

Agency (JAXA) SELenological and ENgineering Explorer (SELENE) spacecraft, also known as Kaguya,

which orbited the Moon in 2009. Among its instruments was the Multiband Imager (MI), a 9-band imaging

camera that measured reflected light from the lunar surface in the visible to near-infrared (0.415–1.55 µm;

Ohtake et al. 2008). As noted in §1.2, the space weathering product submicroscopic iron (smFe0) darkens

and reddens lunar reflectance spectra in the visible to near-infrared and these changes were apparent in

Kaguya MI spectra. Using a Hapke radiative transfer model (Hapke, 2001) that tracks the behavior of light

reflected from a simulated surface, Trang & Lucey (2019) were able to show that adding smFe0 particles to

the model resulted in simulated spectra similar to those observed by the Kaguya MI. Furthermore, they

showed that their simulated spectra improved when two different sizes of smFe0, nanophase iron (< 40 nm)

and microphase iron (> 40 nm), were incorporated into their Hapke model (Trang & Lucey, 2019). By

varying the abundance of nanophase and microphase iron in the model, Trang & Lucey (2019) determined

how much smFe0 was needed to reproduce each spectrum observed by the Kaguya MI. They then translated

these abundances into global nanophase and microphase iron abundance maps. These maps were the first

of their kind to relate the optical effects of space weathering to quantities of physical particles on the

surface produced by space weathering. Visually, the Trang & Lucey (2019) smFe0 maps appeared to be

well-correlated with surface exposure to space weathering; young crater rays are depleted in smFe0, while

ancient terrains were saturated in it. Using these maps, I explored the rate that smFe0 has accumulated in

the lunar surface over the past 1 Ga (chapter 2). Although our understanding of the nature and formation

of OH / H2O is still evolving, many studies point to space weathering as a likely source (§1.5). Therefore,

even if H2O is not a byproduct of smFe0 formation as suggested by Housley et al. (1973), determining the

rate of space weathering in the lunar surface can place useful constraints on the active formation of lunar

OH / H2O.

To investigate the abundance and behavior of OH / H2O on the lunar surface directly, I used two other

spacecraft data sets. The M3 instrument was a NASA contributed instrument to the ISRO Chandrayaan-1

spacecraft which orbited the Moon from 2008–2009 (Pieters et al., 2009; Goswami & Annadurai, 2009). M3
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took spectral measurements of the surface from 0.42–3.0 µm in 86 or 256 channels, depending on its operating

mode. These high spectral resolution observations were developed to precisely measure slight differences in

mineralogy across the lunar surface. However, the detection of a OH / H2O signature near 2.8–3 µm came

as a surprise, but was quickly validated by two other spacecraft around the same time (see §1.4). While it

was clear that some amount of OH / H2O was being detected, it was challenging to characterize its behavior

for several reasons. For example, since the spectrometer was not designed with a broad 3 µm feature in

mind, M3 was only able to measure the onset of the dip in reflectance from 2.8–3 µm. However, it was

clear from the data and from longer wavelength observations during the Cassini flyby (Clark, 2009) that

the feature extends longer than 3 µm, making it impossible to discern the true depth and width of the

feature from M3 data alone. Also, daytime temperatures of the lunar surface cause near-infrared surface

emission similar in strength to the reflectance at 3 µm, which could fully mask an absorption feature if not

properly compensated (Figure 3.1). The emission of the lunar surface is further confounded by the fact that

small surface shadows only centimeters in size have been shown to bias infrared spacecraft measurements of

the lunar surface change the apparent temperature at different wavelengths (Bandfield et al., 2015). These

challenges have resulted in a range of interpretations of the M3 OH / H2O feature primarily due to differences

in accounting for thermal emission. Some have concluded that the 3 µm signature varies diurnally and is

due to H2O (Li & Milliken, 2017), others have concluded that the signature is static and caused by OH

Bandfield et al. (2018), while yet others advocate for a partially mobile and partially stable combination of

OH / H2O (Wöhler et al., 2017). To study the source and behavior of the M3 3 µm feature, I developed a

thermal model that accounts for the roughness of the lunar surface and independently predicts the emission

contributing to each M3 observation (chapter 3).

To validate the roughness thermal model developed in chapter 3, I used thermal infrared observations from

the Diviner Lunar Radiometer Experiment aboard the LRO, which has been in orbit since 2009 (Chin et al.,

2007; Paige et al., 2010b). Diviner has been steadily taking measurements of the Moon for over a decade,

producing the most robust global thermal data set of the Moon to date. Diviner consists of 9 channels, 7 of

which are in the infrared from 7.55–400µm (Paige et al., 2010b). It was recognized early on that daytime

Diviner temperatures measured by the 7 well-calibrated channels could differ from each other as a function of

the solar incidence angle (governed by the time of day and latitude). Work by Bandfield et al. (2015) showed

that the negative trend in apparent brightness temperature with increasing wavelength was predictable when

accounting for the roughness of the lunar surface. Their argument rested on two facts of thermal radiation.

The first was that the lunar surface is a very good insulator, meaning it does not conduct heat well, and

the Moon also lacks an atmosphere to convect heat, causing surfaces only centimeters apart to differ in

temperature by up to 100s of degrees. The second is that thermal emission (given by the Planck function) is
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strongly temperature dependent and shifts to lower wavelength at higher temperatures. Therefore, imagery

that cannot resolve centimeter-sized surfaces (i.e., all spacecraft data) will see a mixture of temperatures

on the surface governed by the thermal conditions at each centimeter-sized facet of the surface. At high

latitudes or when the sun is low in the sky (high solar incidence angle), centimeter-scale roughness can cast

shadows on the surface, causing large temperature differences within a given scene (anisothermality). When

Diviner records the total emission, it is heavily weighted to hot sunlit facets at short wavelengths and cooler

shadowed facets at long wavelengths. By predicting the proportion of the surface that is shadowed under

different conditions, Bandfield et al. (2015) developed an anisothermal emission model that was a good fit to

Diviner observations. Later, Bandfield et al. (2018) used an updated version of this roughness-based thermal

model to predict the emission contribution at 3 µm, presenting a correction of M3 based on the thermal

properties of the surface. That work suggested a strong OH / H2O signature throughout the lunar day.

In chapter 3, I update and extend the roughness thermal model developed in Bandfield et al. (2015, 2018),

which was limited to lower incidence angle conditions. Using Diviner thermal observations, I validate the

new model to show that it accurately captures the anisothermality introduced by roughness. I then apply the

new emission predictions to M3 observations to investigate the variability of the 3 µm OH / H2O signature

at mid to high latitudes.

The third investigation I present in chapter 4 differs from the others in that it is not based directly

on spacecraft observations. In this chapter, I investigate the abundance and depth of water ice below

permanently shadowed region (PSR) cold traps near the lunar south pole. Since the majority of spacecraft

data are only sensitive to surface - and best efforts to seek ice in the subsurface with radar and other

techniques have been inconclusive (§1.3), this chapter required a different approach. Building on a recently

published model of polar ice and ejecta stratigraphy (Cannon et al., 2020), I use a computational model to

simulate the delivery of ice and ejecta to polar cold traps. I also developed a thermal model to determine the

loss of ice as warm ejecta is vigorously mixed into a given PSR through a process called ballistic sedimentation.

At present, little is known about ice buried below the PSRs other than what we can infer from the single

LCROSS impact experiment at Cabeus crater (Colaprete et al., 2010). However, as the National Aeronautics

and Space Administration (NASA) Artemis program prepares to resume uncrewed and then crewed missions

to the south polar region, in addition to many next-generation spacecraft missions planned to do polar

reconnaissance, we may be able to test the predictions made in chapter 4 in the near future (§5.1).
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1.7 Manuscript Summaries

The three manuscript chapters that follow each describe a self-contained investigation submitted or in prepa-

ration to be submitted to a peer-reviewed journal. Each manuscript contributes to my central goal of

understanding the origin and distribution of water on the Moon, which I summarize here.

In chapter 2, Manuscript I: New Constraints on the Lunar Optical Space Weathering Rate, I investigate

the rate that space weathering effects accumulate on the lunar surface. Lunar space weathering primarily

consists of solar wind irradiation and micrometeorite bombardment, each of which have implications for the

generation and storage of OH / H2O on the Moon (§1.5). In this manuscript, I quantify the rate of space

weathering in the lunar highlands over time through the correlation between submicroscopic iron (smFe0)

and ages of young lunar craters. I conclude that space weathering effects influence the lunar surface at

a predictable rate for the first 1 Ga of surface exposure. Investigating the size-dependent accumulation

rates of smFe0, I inferred that solar wind likely influences nanophase iron accumulation, but micrometeorite

bombardment could drive microphase iron accumulation. Constraining the rate at which that the solar wind

and micrometeorite bombardment alter the lunar regolith has implications for solar wind implantation of

hydrogen and production of OH / H2O by space weathering.

In chapter 3, Manuscript II: Roughness reveals persistent daytime OH/H2O on the Moon from Equatorial

to High Latitudes, I investigate the widespread lunar 3 µm spectral feature measured by M3 (§1.4). Associated

with hydroxyl (OH) and/or water (H2O), the 3 µm absorption feature has been thought to indicate daily

migrating water, hydroxyl or water tightly locked in the surface, or some combination of migrating and static

OH / H2O. These conflicting interpretations have stemmed from challenges in compensating for thermal

emission and roughness of the lunar surface. I developed an improved roughness thermal model to predict

emission at 3 µm, validated it using spacecraft thermal observations, and applied it to remove emission from

M3 spectra. I investigated the variability of the 3 µm feature throughout the lunar day and with changing

latitude and found no evidence that the widespread lunar OH / H2O migrates around the surface. This

indicates that although OH / H2O is widespread across the lunar surface, it is trapped within regolith grains

and unlikely to be as easily extracted as previously thought.

In chapter 4, Manuscript III: Buried Ice Deposits in Lunar Polar Cold Traps were Disrupted by Ballistic

Sedimentation, I investigated buried ice deposits beneath lunar polar cold traps (§1.3). Permanently shad-

owed regions (PSRs) near the lunar poles are potentially long-lived sites where lunar water from a variety of

sources may be stored. Over geologic time, nearby impact events would have delivered ejecta (regolith and

boulders) to the PSRs, potentially heating, mixing and/or burying water ice that was present on the surface.

A previous model estimated the quantity of ice that could be buried in the polar regions by crater ejecta,

15



but did not consider the heating and mixing effects of the ejecta entering each PSR. I modeled this process,

known as ballistic sedimentation, and incorporated it into an improved polar ice and ejecta stratigraphy

model. Using the improved model, I predicted which south polar PSRs were most likely to retain thick ice

deposits at depth. This work directly supports NASA Artemis program which aims to land humans in the

lunar south polar region this decade, in part to study the availability of water and other volatiles on the

Moon. This work makes testable predictions about the size and distribution of buried lunar ice deposits,

furthering our understanding of water abundance and storage on the Moon.

Together, these three investigations advance our understanding of lunar surface processes like space

weathering, ballistic sedimentation, and water migration. These studies have implications for the production,

mobility, and usability of lunar OH / H2O both widespread across the lunar surface and buried at the lunar

poles.

1.8 Open Science Philosophy

The recently established NASA Transform to Open Science (TOPS) program1 recognizes that the lack of

transparency in research practices hinders scientific progress and leads to barriers for historically excluded

communities. Developed with recommendations from NASA’s Strategy for Data Management and Comput-

ing for Groundbreaking Science 2019–2024, the National Academies reports on open science, reproducibility,

and scientific software, and the 2021 UNESCO draft Recommendation on Open Science synthesis report, the

TOPS program aims to promote scientific collaboration, accessibility, and reproducibility (SDMWG, 2018;

NAS et al., 2018; CBPFOCPNSS et al., 2018; UNESCO, 2021). These initiatives are timely as concerns

mount about the reproducibility of science (the so-called “reproducibility crisis”), which is driven in part by

lack of access to research data and analysis code (Baker, 2016; Miyakawa, 2020). Since each manuscript in

this dissertation required code for data generation, filtering, processing, and analysis, I saw an opportunity

to implement open science values in my work.

A core value of the open science movement is accessibility which can be achieved in part by using existing

free and open source tools to conduct research. Most code generated for this dissertation was authored in

the free and open source Python programming language which has become a central tool in planetary data

science and research (Laura et al., 2013; Hess et al., 2016). I also released source code developed for each

manuscript chapter of this dissertation as open source, citable repositories. Care was taken to include code,

documentation, usage examples, and instructions for installation to facilitate access and usability of each

code base. All three repositories are publicly available on GitHub2, an open source software hosting and

1https://science.nasa.gov/open-science/transform-to-open-science
2https://github.com/
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collaboration platform (Perkel, 2016). For robustness and ease of citation, each repository was assigned a

Digital Object Identifier (DOI) with Zenodo3, and a DOI resolving to a snapshot of the specific software

version used to prepare each manuscript. Each Zenodo webpage also contains a link to the full GitHub

source code with latest software updates and documentation for ease of access and discoverability. Finally,

all repositories are licensed with the MIT open license which allows free and unlimited use, editing, and

redistribution of each package, with proper citation of the source repository. Below, I summarize the three

open source repositories generated in this work.

For Manuscript I (chapter 2), I contributed to the craterpy Python package. Originally developed in

2017 to support my previous investigations into lunar crater maturity (Tai Udovicic et al., 2016), craterpy

is an open source collection of tools used to extract and analyze image data associated with impact craters

(Tai Udovicic, 2017). It was used to collect the smFe0 data central to chapter 2. Through this work,

craterpy was updated to version 0.5.14 to improve its recognition of geographical information embedded in

image files.

In Manuscript II (chapter 3), I describe the roughness Python package that predicts the shadowing

conditions on rough planetary surfaces (Tai Udovicic et al., 2021b). Also available as an open source Python

package, the model was translated from the shadowing model described in Bandfield et al. (2018), originally

written in the Davinci programming language. The model was then generalized to allow customization of

the reference surface used in the statistical shadowing computation and to allow a range of thermal models

to be used to predict surface emission while accounting for roughness (the model is described in detail in

§3.3). Version 0.10.15 was released in preparation for Manuscript II to be submitted for peer review.

The Moon Polar Ice and Ejecta Stratigraphy model is the basis of Manuscript III (chapter 4) and is

available as an open source Python package called moonpies (Tai Udovicic et al., 2022a). The model

framework was translated from a MATLAB script published by Cannon et al. (2020) and then significantly

updated to add several methods of ice and ejecta delivery and to improve computational efficiency and

reproducibility. Version 1.0.06 allows users to tweak nearly every model parameter with a simple configuration

file and allows deterministic, reproducible Monte Carlo model runs by supplying a random seed. A detailed

description of the MoonPIES model and its parameters is given in §4.3.

The three open source repositories developed here contribute to the wider body of planetary research

software and embrace the core goals of the NASA TOPS movement. These transparent research code bases

are now available for use and open to feedback, improvements, and contributions from the wider community.

3https://zenodo.org/
4https://doi.org/10.5281/zenodo.4780769
5https://doi.org/10.5281/zenodo.7440068
6https://doi.org/10.5281/zenodo.7055800
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Chapter 2

Manuscript I: New Constraints on the Lunar Optical Space Weathering Rate

Christian J. Tai Udovicic1, Emily S. Costello2, Rebecca R. Ghent3, Christopher S. Edwards1

This is the Accepted Manuscript version of an article accepted for publication in Geophysical Research
Letters (GRL). Wiley Inc is not responsible for any errors or omissions in this version of the manuscript
or any version derived from it. The Version of Record is available online at https://doi.org/10.1029/

2020GL092198.

2.1 Abstract

Space weathering processes form submicroscopic metallic iron particles that are optically active, darken-

ing and reddening the lunar surface over time. The optical effects of these particles depend on their size;

nanophase iron darkens and reddens, while microphase iron darkens without reddening. Using available

Kaguya Multiband Imager parameter maps believed to estimate submicroscopic iron abundance, we inves-

tigate trends that may be associated with abundance of nanophase and microphase iron near dated lunar

craters. We observe that nanophase iron is strongly correlated with crater age, while microphase iron exhibits

a weaker correlation. We present models for the highlands nanophase and microphase iron accumulation

rates from 100 ka – 1 Ga. Our observations suggest that highlands nanophase iron abundance is a direct

result of space weathering exposure, while highlands microphase iron abundance is likely influenced by lunar

source materials or stochastic impact-delivery mechanisms.

Plain Language Summary

The Moon, Mercury, and asteroids lack protective atmospheres and slowly darken over time due to their

exposure to space. We call this darkening process space weathering. Apollo samples returned from the Moon

show that space weathering produces tiny iron particles that range in size from nanometers to micrometers.

We use orbital lunar maps of nanophase and microphase iron content to better understand how quickly

space weathering occurs on the Moon. We first find the iron content of young lunar soils deposited by

1Northern Arizona University (NAU), Department of Astronomy and Planetary Science (DAPS), PO Box 6010, Flagstaff,
AZ 86011, USA

2University of Hawai’i at Manoa, Honolulu, HI, USA
3Planetary Science Institute, Tucson, AZ, USA
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large impact events, then use the age of each impact crater to see how much iron accumulates in different

lengths of time. We find that nanophase iron accumulates predictably over time due to space weathering. In

contrast, microphase iron accumulates less predictably, possibly because it exists in the lunar soil initially,

or is delivered to the Moon by crater-forming impacts. Our work helps us understand how the surface of the

Moon weathers over time and how space weathering might work elsewhere in the Solar System.

2.2 Introduction

Space weathering is the combination of processes that physically and chemically alter the surfaces of airless

bodies over time. On the Moon, space weathering darkens and reddens the optical spectrum through

formation of fine metallic iron particles, termed submicroscopic iron (smFe0) (Cassidy & Hapke, 1975; Pieters

et al., 2000; Hapke, 2001). The optical effects of smFe0 are highly dependent on its size: smaller nanophase

iron particles (1–40 nm) cause optical darkening and reddening, and larger microphase iron particles (40

nm – 2 µm, sometimes called Britt-Pieters particles) darken without reddening (Keller & Clemett, 2001;

Britt & Pieters, 1994; Noble et al., 2007; Lucey & Noble, 2008; Lucey & Riner, 2011). In this work, we use

published parameter maps thought to represent different forms of smFe0 along with craters of known age to

estimate the rate of accumulation of nanophase and microphase iron on the lunar surface.

Several mechanisms of smFe0 formation are actively debated in the literature. An early hypothesis sug-

gested that solar wind sputtering and/or H+ implantation could reduce mineral iron in oxides (FeO) to

form metallic Fe0 (Wehner, 1961; Cassidy & Hapke, 1975). While ion irradiation experiments are capable

of producing smFe0, it appears that H+ implantation is not a necessary precursor as seen in He ion irradia-

tion and pulse laser experiments which simulate micrometeorite bombardment (Sasaki et al., 2001; Loeffler

et al., 2009). The discovery of thin smFe0-bearing rims on individual regolith grains appeared to solve the

conundrum (Keller & McKay, 1993, 1997). Hapke (2001) described a model by which solar wind sputtered

and micrometeorite vaporized material would naturally deposit nanophase iron on adjacent grains (Hapke,

1973). The smFe0-bearing grain rims could then combine and form the full distribution of nanophase and

microphase iron particles found in agglutinates by successive melt/vaporization events (Noble et al., 2007;

Pieters & Noble, 2016). The sputter deposit aspect of this model is backed by several remote observations

that report reduced optical space weathering in zones of reduced solar wind flux (e.g. at higher latitude or

on magnetically shielded lunar swirls) (Hemingway et al., 2015; Glotch et al., 2015; Sim et al., 2017). Thus

far, laboratory simulations of solar wind irradiation have failed to confirm the solar wind sputter-deposits

(Christoffersen et al., 2015). In addition, solar wind contribution is called into question by immature Apollo

soils which appear to contain an abundance of nanophase iron in micrometeorite-associated vapor deposits,
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relative to solar-wind damaged grain rims (Keller & Zhang, 2015). Here, we provide new constraints on

the possible smFe0 formation mechanisms by leveraging modeled nanophase and microphase iron particle

abundances predicted from radiative-transfer modeling (Trang & Lucey, 2019).

While most of the lunar surface is heavily space weathered and locally homogenized by regolith gardening,

notable exceptions are the bright rays and youthful ejecta of recently formed craters. Impact craters provide

natural time stamps on the lunar surface and their ejecta have informed our understanding of lunar space

weathering for decades (e.g., Shoemaker & Hackman 1962; Grier et al. 2001). Notably, the Diviner rock

abundance proximal to dated craters exhibits a tight correlation with crater age, constraining the mechanical

weathering of surface rocks and providing a new chronometer used to date similarly rocky craters (Ghent

et al., 2014; Mazrouei et al., 2019). Constraining the optical weathering rate of the regolith has proven more

challenging, partially due to target composition biasing maturity parameters, inhibiting global comparisons

(Grier et al., 2001; Braden & Robinson, 2013; Nettles et al., 2011).

Our work updates our understanding of the optical weathering rate in two important ways. First, we use

modern parameter maps of nanophase and microphase iron which are empirically validated by Apollo soil

spectra and backed by a physical radiative-transfer model (Trang & Lucey, 2019). Second, we use a larger

sample of dated lunar craters <1 Ga, enabled by recent developments in remote detection and chronology

of young lunar craters (Ghent et al., 2014; Williams et al., 2018). For comparison with previous work,

we apply our methodology to a database of large rayed craters previously investigated in the Clementine

optical maturity parameter (Grier et al., 2001). We present new surface accumulation rates of nanophase

and microphase iron and discuss key constraints that they place on the lunar optical space weathering rate.

2.3 Methods

We split our analysis into 2 parts: Global and Highlands. First, we investigate global (within ±600 latitude)

smFe0 trends, incorporating both the highlands and mare regions. Using crater populations dated relative

to one another, we present overall trends in the nanophase and microphase iron with age and show heritage

from the Grier et al. (2001) global study of lunar optical maturity (Figure 2.2). Second, we restrict our study

to the lunar highlands and craters with absolute model ages. We derive surface accumulation rates from

time-resolved fits to the highlands nanophase and microphase iron abundance (Figure 2.3). This portion of

the analysis is limited to the iron-poor lunar highlands which are more consistent in FeO content and optical

space weathering trends (Lucey et al., 1998; McFadden et al., 2019; Trang & Lucey, 2019).
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Figure 2.1: Four craters of decreasing model age (descending order) shown in the Lunar Reconnaissance

Orbiter Wide Angled Camera 643 nm mosaic, Kaguya Optical Maturity (OMAT) parameter, nanophase iron

abundance and microphase iron abundance (left to right; Speyerer et al. 2011; Lemelin et al. 2016; Trang

& Lucey 2019). Ejecta annuli extending from each crater rim to 4 crater radii are denoted in green. Mean

OMAT, nanophase iron abundance, and microphase iron abundance computed within the annulus are shown

in each respective inset as µejecta.
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2.3.1 Nanophase and Microphase Iron abundance

We define an annular region of interest around each crater in the global 60◦N – 60◦S, 1 km/pixel nanophase

and microphase iron maps of Trang & Lucey (2019) using the craterpy Python package (Tai Udovicic, 2017).

We scale each annulus with crater radius; the inner edge of the annulus is set at the crater rim (1 crater

radius from the center), while the outer edge of the annulus extends to 4 crater radii (Figure 2.1). We

parameterize each crater by the mean nanophase and mean microphase iron abundance within the annulus,

excluding terrain within the crater rim which may be refreshed by mass wasting on steep slopes. In the global

analysis, the mean iron abundances are grouped by relative age (Figure 2.2). In the highlands analysis, the

mean iron abundances of each crater are plotted with age (Figure 2.3).

Four crater radii is chosen as the maximum annular extent because the youngest craters in our sample

typically feature a continuous nanophase iron depletion zone of this size. We note that a small fraction (∼9%)

of our highlands crater population exhibit asymmetric ejecta, causing some background contamination in

select craters (e.g., Cold Spot 3, Figure 2.1). In addition, small fresh impacts may act to refresh the material

within our chosen annulus. We limit our sample to craters of sufficient size (annulus ≥ 12 pixels) such that

these effects are minor for any given crater (Fig. S3). Additionally, we fit a sufficient sample (n=77 craters

in the highlands) such that these effects are negligible on our overall trends (Fig. S4). We do not undertake

a detailed mapping of crater ejecta because anomaly identification is likely to be biased for craters near the

resolution limit of the Trang & Lucey (2019) maps.

2.3.2 Crater Populations

The global analysis uses two published crater databases providing relative crater ages. The Lunar and

Planetary Institute (LPI) crater database consists of the 421 craters dated as Copernican, Eratosthenian,

and Imbrian in the Lunar and Planetary Institute Lunar Impact Crater Database (Losiak et al., 2015).

The OMAT crater database contains large rayed craters relatively dated by Grier et al. (2001) as Young

(appear younger than Tycho), Intermediate (appear younger than Copernicus) and Old (appear older than

Copernicus) using the Clementine OMAT parameter (Table 2.1).

The highlands analysis uses three published crater databases providing absolute model ages of craters.

The Chronology crater database consists of 8 craters dated using crater counting techniques, assuming the

standard lunar chronology function (e.g., Neukum et al. 2001). These craters are Byrgius A, Giordano

Bruno, Hell Q, Jackson, King, Moore F, Necho, and Tycho (Morota et al., 2009; Hiesinger et al., 2012; van

der Bogert et al., 2010; Eugster, 1999; Ashley et al., 2012; Salih et al., 2016). For craters with multiple

published ages, we selected model ages derived from crater counts on the ejecta.
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Figure 2.2: Box plots of mean nanophase iron (top) and microphase iron (bottom) in the crater annuli

of the OMAT (left) and LPI databases (right), grouped by relative age. Cold spot craters are included as

a young endmember population. The central orange bar of each population denotes the median and the

whiskers denote 1.5*IQR (interquartile range). Circles denote outliers outside 1.5*IQR). Nanophase and

microphase iron abundances increase with relative ages of OMAT craters. Copernican craters exhibit a

paucity of nanophase iron relative to Eraotsthenian and Imbrian craters, but this contrast is less apparent

for microphase iron.
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The Rock Abundance crater database consists of 57 craters ≥10 km in diameter which have published

absolute model ages based on the Diviner Rock Abundance of their ejecta (Ghent et al., 2014; Mazrouei

et al., 2019). Several Chronology craters are duplicated in the Rock Abundance database. Where this is the

case, we choose the model age predicted by the standard lunar chronology function. The Cold Spot crater

database consists of 12 Diviner cold spot craters dated by crater counting techniques and the standard lunar

chronology function (Williams et al., 2018). We group this database separately from the Chronology craters

because they form a population of the youngest craters in our sample and are thermophysically distinct

(Williams et al., 2018).

Table 2.1: The five impact crater databases, the ages they provide, and the final counts used in this study

(see Data Sets S1 & S2 for full tables).

Crater Database Age Classification Population Age Count
Cold Spot† Absolute 220 ka – 1.3 Ma 12
Chronology† Absolute 1.5 Ma – 990 Ma 8
Rock Abundance† Absolute 22 Ma – 990 Ma 57
OMAT Young ≤ Tycho (∼100 Ma) 5

Intermediate Tycho – Copernicus 38
Old > Copernicus (∼800 Ma) 18

LPI Copernican < 1.1 Ga 70
Eratosthenian 1.1 Ga — 3.2 Ga 118

Imbrian 3.2 Ga — 3.85 Ga 233
Saturation range† ≥ Eratosthenian ≥ 1.1 Ga 52
†Highlands subset only.

The Highlands Saturation Range population consists of 52 craters used to infer the levels of saturation

for the nanophase and microphase iron in the lunar highlands. This population is a subset of the LPI crater

database containing only highlands craters Eratosthenian or older and ≤200 km in diameter.

We filter all craters by the following criteria: The entire ejecta annulus falls in bounds of, and represents

at least 12 pixels in, the 1 km/pixel, 60◦N, 60◦S global smFe0 maps (Trang & Lucey, 2019). Highlands

crater annuli must additionally not cross the mare bounds defined by Nelson et al. (2014), who used Lunar

Reconnaissance Orbiter Camera (LROC) images to precisely demarcate lunar mare boundaries. Although

the smFe0 maps decrease in mean abundance at latitudes pole-wards of ±50◦ (Trang & Lucey, 2019), all

dated highlands craters that meet the above criteria are within 50◦N and 50◦S so we do not apply a latitude

correction in this work (Fig. S1).

Final counts and age summaries for each database are given in Table 1. See Data Sets S1 & S2 for full

crater lists and derived smFe0 abundances.
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2.4 Results

2.4.1 Global Analysis

We plot our derived distribution of mean nanophase and microphase iron for craters from the LPI and

OMAT databases, grouped by relative age (Figure 2.2). The Cold Spot database is included as the young

endmember population for comparison. We observe consistently lower modeled nanophase iron abundance

relative to microphase iron. Unexpectedly, microphase iron is enhanced (median > 0.5 wt %) initially for cold

spot craters (≤ 1 Ma), while nanophase iron is negligible for the same craters (median < 0.05 wt %). In the

LPI populations, only the Copernican range is exhibits reduced nanophase and microphase iron, consistent

with having observable unsaturated rays (Shoemaker & Hackman, 1962; Losiak et al., 2015). No significant

smFe0 variation is observed in non-Copernican populations (i.e., OMAT Old, Eratosthenian, and Imbrian

craters), implying saturation. Relatively wide saturation ranges are expected due to variable FeO content in

the mare and highlands, as discussed in Trang & Lucey (2019). In addition, we observe that nanophase iron

abundance is consistently lower than microphase iron abundance across all populations, while the former

appears to increase rapidly on very young surfaces.

2.4.2 Highlands Analysis

We plot the mean nanophase and microphase iron of each highlands crater versus crater age (Figure 2.3).

Age uncertainties indicated are the crater chronology model age uncertainties for Cold Spot and Chronology

craters, and the 95% credible intervals for Rock Abundance craters (see references in Table 2.1). Uncertainties

in smFe0 are the standard error of the mean within each crater annulus. To investigate the evolution of smFe0

over time, we plot these data both on log-log and linear-log axes (Figure 2.3a and Figure 2.3b, respectively).

Linear fits on log-log axes are consistent with power law growth in time (Figure 2.3a). Microphase iron

appears weakly power-law correlated (R2 = 0.37, Equation 2.1). By contrast, nanophase iron is non-linear

on log-log axes, indicating non-power law growth (more apparent on linear axes (Fig. S2).

Linear fits on linear-log axes are consistent with logarithmic functions of time (Figure 2.3b). The log-

arithmic fit to microphase iron is again weakly correlated (R2 = 0.36), while nanophase iron is strongly

correlated in log-time (R2 = 0.88). Logarithmic fits predict a greater y-intercept (initial abundance) for

microphase iron (a=0.57 wt%, b: 0.024), relative to (a=0.081 wt%, b: 0.049) for nanophase iron, where fits

are given by y = a + blog(x) (Equations 2.2–2.3). We discuss the significance of the differing intercepts in

Section 2.5.2.

We also compute saturation ranges of nanophase iron (0.40 – 0.51 wt%) and microphase iron (0.75 –
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0.86 wt%) representing the mean ±1σ range of smFe0 in LPI Highlands Saturation annuli (shaded regions,

Figure 2.3). The fits described above and in Equations 2.1–2.3 each reach saturation in 1 Ga within error,

as expected.

We note that the power law and logarithmic fits for microphase iron are equivalent within error, but we

present both fits for ease of comparison with previous power law models of space weathering and impact flux

(e.g., Ghent et al. 2014; Mazrouei et al. 2019). The power law curve of best fit (Figure 2.3a) is given below,

where y is microphase iron abundance (wt%) and x is age (Ma).

ymicrophase = (0.56± 1)x0.040±0.0059, R2 = 0.37 (2.1)

The logarithmic curves of best fit of microphase and nanophase iron (Figure 2.3b) are given below, where

y is metallic iron abundance (wt%) and x is age (Ma).

ymicrophase = (0.57± 0.018) + (0.024± 0.0037)log(x),R2 = 0.36 (2.2)

ynanophase = (0.081± 0.010) + (0.049± 0.0021)log(x),R2 = 0.88 (2.3)

In summary, our results place the following empirical constraints on the growth of highlands nanophase

and microphase iron over time.

1. Both nanophase and microphase iron are correlated in logarithmic time.

2. Microphase iron is less correlated than nanophase iron in log time (R2=0.36 and R2=0.88, respectively).

3. Nanophase iron is negligible initially (0 wt% within error for craters 100 ka or younger)

4. Microphase iron appears to be elevated initially or very soon after crater formation (∼0.5 wt% for 100

ka craters)

2.5 Discussion

2.5.1 Global Constraints

We observe clear increasing trends in absolute nanophase and microphase iron abundance over Coperni-

can timescales (Figure 2.2). Both sizes of smFe0 appear saturated for non-Copernican populations (i.e.,

OMAT old, Eratosthenian, and Imbrian), as expected. The greater abundance of microphase iron relative

to nanophase iron, particularly in the youngest craters, is notable and will be discussed further below. Our

analysis shows that previous crater maturity studies with OMAT are broadly consistent with the modeled
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Figure 2.3: Mean abundances of microphase iron (black) and nanophase iron (red) in highlands crater

annuli plotted over crater age. a Log-log axes and straight-line power law fits. b Linear-log axes and

straight-line linear-logarithmic fits. Saturation ranges (shaded regions) denote the mean ±1σ of

non-Copernican highlands LPI craters. Ordinary least squares regression fits (Equations 2.1–2.3),

prediction intervals and 95% confidence intervals are shown.
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nanophase and microphase iron abundances of Trang & Lucey (2019). Further global interpretations would

require a more detailed understanding of how local iron composition influences the rate of production and

saturation limits of smFe0 (McFadden et al., 2019; Trang & Lucey, 2019).

2.5.2 Highlands Constraints

Our modeled linear-logarithmic fit to highlands nanophase iron abundance exhibits a strong correlation with

age (R2 = 0.88) and an approach to saturation in 1̃ Ga, i.e. on a Copernican timescale, as expected (Equation

2.2; Figure 2.3b). Our model residuals are consistent with respect to latitude, longitude, crater radius and

crater age, suggesting the trend we observe is robust (Fig. S5). Our model also predicts negligible nanophase

iron in the initial primary ejecta of craters in our sample (> 0.5 km diameter). Our results are consistent

with ferromagnetic resonance (FMR) measurements of smFe0 in Apollo soils which found that nanophase

iron is strongly correlated with maturity and negligible in pristine regolith (Morris, 1980). Our model is

broadly consistent with our understanding of lunar space weathering and relates modeled nanophase iron

abundance to surface exposure age for the first time.

In contrast, highlands microphase iron exhibits weakly correlated linear-logarithmic or power law growth

over time (R2 = 0.36 and 0.37, respectively). Since these fits are indistinguishable within errors, we discuss

the linear-logarithmic model which is both simpler and consistent with the nanophase iron model. The non-

zero early abundance and weak correlation of microphase iron with crater age are qualitatively similar to the

trends Morris (1980) identified in Apollo samples. That study found that the microphase fraction of smFe0

is present in pristine Apollo soils and is weakly correlated with maturity, likely due to the variable quantities

present in lunar source materials. We note that our modeled microphase iron abundance saturation range

(0.75 – 0.86 wt%) exceeds the maximum corresponding Fe0C–Fe
0
A content (0.56 wt %) measured by Morris

(1980). This discrepancy could be due to the Trang & Lucey (2019) radiative-transfer model assuming

microphase iron particles are ≥ 33 nm, smaller than other derivations of the microphase iron particle size in

the literature (Noble et al., 2007; Lucey & Riner, 2011). If the microphase iron particle size is increased in

the Trang & Lucey (2019) model, we would expect an overall downward shift in microphase iron abundances

that would preserve the trends we observe over time. Therefore, the microphase iron models we present in

Equations 2.1–2.2 capture trends in the relative abundance of microphase iron over time, though they may

not be reliable as absolute wt % abundance predictors.
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2.5.3 A Broken Link Between Nanophase and Microphase Iron Accumulation

Our analysis of highlands smFe0 reveals three primary differences in the accumulation of nanophase and

microphase iron over 100 ka – 1 Ga:

1. Crater ejecta ∼100 ka contain negligible nanophase iron, but detectable microphase iron.

2. Microphase iron is less correlated with crater age than nanophase iron.

3. Nanophase iron accumulates at a greater rate (steeper log slope) than microphase iron through time.

We discuss the implications of these constraints on the following models of optical space weathering:

Nanophase aggregation: A common hypothesis is that nanophase iron is primarily formed in vapor

deposits by micrometeorite impacts and is later aggregated to form microphase iron in agglutinates (Pieters

& Noble, 2016). This hypothesis is corroborated by the observation that nanophase iron is found primarily in

the rims of individual soil particles, while microphase iron is found in heavily reworked agglutinates (Keller

& McKay, 1993, 1997; Keller & Clemett, 2001).

Our observations indicate that if nanophase aggregation is the primary space weathering mechanism,

then either the Trang & Lucey (2019) maps preferentially overestimate the abundance of microphase iron

near young craters or the provenance of microphase iron abundance is more linked to source materials than

space weathering products. From 100 ka until saturation, microphase iron is much more weakly correlated

with crater age (R2 = 0.36) than nanophase iron (R2 = 0.88), indicating that microphase iron abundance

is only a minor function of exposure to space weathering. This observation could be explained if highlands

source materials (e.g., bedrock and breccia) contain highly variable quantities of microphase iron, thus

seeding each crater in our sample with an independent initial abundance. Additionally, Morris (1980) also

proposed that impactors larger than micrometeorites may be a source of microphase iron. If this is the

case, the initial quantity of microphase iron could also depend on the composition of the primary impactor,

while delivery of microphase iron by later non-micrometeorite impacts may explain the variance in our

observations. Therefore, while micrometeorite bombardment may aggregate nanophase iron into microphase

iron, our observations suggest this is not the primary source of microphase iron in the highlands regolith.

Nanophase and microphase independent growth: An alternative hypothesis is that nanophase

and microphase iron accumulation are governed by independent processes. For example, solar wind and

micrometeorites could both play significant but distinct roles in lunar space weathering. This hypothesis

is most commonly supported by observations of inconsistent weathering trends correlated with the solar

wind flux, e.g. with latitude, across magnetic anomalies, and on equator-ward and pole-ward facing slopes

(Hemingway et al., 2015; Glotch et al., 2015; Sim et al., 2017).
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Our observations are consistent with a mechanism by which nanophase iron accumulation is controlled

by the solar wind while microphase iron accumulation is controlled by micrometeorites (Hemingway et al.,

2015). Observations of Apollo soils have revealed that solar wind amporphized rims in the finest fraction of

lunar soil grow in thickness over logarithmic time, while vapor deposited rim thicknesses show no correlation

in time (Keller & Zhang, 2015). The logarithmic growth of solar wind amorphized rims of the finest fraction

of lunar soil may suggest that the well-correlated logarithmic growth of nanophase iron we observe here is

controlled by solar wind amorphization of the finest fraction. Micrometeorites may then be responsible for

redistributing solar wind-produced nanophase iron in depositional rims and/or aggregating it into microphase

iron in agglutinates, as described above. Alternatively, microphase iron growth may be controlled entirely

by micrometeorite or larger impactors with negligible input from the solar wind, as the saturation of lunar

swirls in microphase – but not nanophase – iron appears to suggest (Trang & Lucey, 2019). The potential

bombardment source of microphase iron in Apollo soils was noted to be indistinguishable from lunar source

materials by Morris (1980). Similarly, our analysis cannot distinguish between microphase iron present

initially in lunar highlands materials or delivered stochastically by later bombardment.

The nanophase and microphase iron accumulation rates we present are broadly consistent with our

understanding lunar space weathering. Our results also suggest that parameterizing crater ejecta by the mean

within 4 crater radii is a simple yet effective tool for comparing crater ejecta across orders of magnitude in size

and age. Extending these analyses to the lunar maria could further constrain the role of source materials in

the accumulation of nanophase and microphase iron on the lunar surface, in turn yielding additional insights

for the role of solar wind and micrometeorites in lunar space weathering. We also note that while the

final saturation of nanophase and microphase iron is likely governed by gradual homogenization by impact

gardening (Gault et al., 1974; Costello et al., 2018), we find no significant change in linear-log accumulation

rate of smFe0 over the crater ages and sizes observed here.

2.6 Conclusions

Our analysis reveals distinctions between the surface accumulation of nanophase iron and microphase iron

over time on the lunar surface. Globally, the nanophase and microphase iron parameters accumulate over

time and show good agreement with prior investigations of optical space weathering. In the lunar highlands,

we observe negligible nanophase iron < 100 ka and a tightly correlated accumulation from 100 ka – 1 Ga. By

contrast, we observe an initial enhancement in microphase iron associated with very young craters < 100 ka,

followed by a gradual approach to saturation from 100 ka – 1 Ga. For the first time, we present quantitative

accumulation rates of lunar nanophase and microphase iron in the highlands. Furthermore, our analyses
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suggest that space weathering exposure is the primary predictor of highlands nanophase iron abundance,

while highlands microphase iron abundance may be influenced by lunar source materials or delivery by

micrometeorite or larger impacts. The insights into lunar smFe0 presented here will help disentangle the

myriad processes that weather the surfaces of airless bodies over time.
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Chapter 3

Manuscript II: Roughness Reveals Persistent OH/H2O on the Moon from
Equatorial to High Latitudes

Christian J. Tai Udovicic1, C. W. Haberle 1, C. S. Edwards 1, J. L. Bandfield2, J. K. Gonzales1, J. A. Ruiz1,
W. H. Farrand2

This a preliminary version of an article in preparation for submission to a peer reviewed journal.

3.1 Abstract

Spectral signatures associated with OH/H2O have been recently detected globally on the Moon by sev-

eral independent instruments. Of these, the Moon Mineralogy Mapper (M3) hyperspectral imager has the

greatest spatial coverage and resolution in the 2.7–3 µm spectral region. However, different approaches to

thermal emission correction have resulted in conflicting interpretations of the M3 3 µm absorption feature.

Determination of lunar thermal emission is complicated by the rough lunar surface. Observed brightness

temperatures can vary as a function of wavelength due to anisothermality within a scene. Here, we present

an updated physics-based thermal model, with a probabilistic treatment of surface roughness, that we use to

correct M3 spectra at a range of latitudes and local times. A generalized raytracing model predicts shadowing

of self-affine rough surfaces over a range of illumination conditions. These shadowing statistics are coupled

with a 1D heat diffusion model to predict the aggregated anisothermal emission for a given viewing geometry

and roughness. We show that this model accurately predicts the daytime anisothermal emission observed

by Diviner from 15° to 70° of solar incidence. Employing our model to account for thermal emission present

in M3 data, we find a deep and persistent 3 µm feature at all latitudes and local times. Our observations

support a strongly bound source of the widespread lunar OH/H2O feature which does not migrate on diurnal

timescales.

1Northern Arizona University, Department of Astronomy and Planetary Science, PO Box 6010, Flagstaff, AZ 86011, USA
2Space Science Institute, Boulder, CO
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Plain Language Summary

The Moon has long been thought to be dry because it lacks the atmosphere needed to lock in water at

its extreme daytime temperatures. Surprising data returned from multiple sources over the last 15 years

found that trace amounts of water do exist and may migrate around the surface daily in a lunar water cycle.

However, water migration was mainly observed using Moon Mineralogy Mapper data which can be biased by

the temperature of the lunar surface. Precisely measuring the temperature of the Moon is challenging because

surfaces only centimeters apart can differ in temperature by hundreds of degrees Celsius, particularly when

the sun is low in the sky and casts long shadows on the rough lunar surface. Here, we present a method that

accurately predicts lunar temperatures while accounting for shadows due to roughness. When we revisit the

data with our updated temperature correction, we find a strong water feature that does not vary throughout

the day. This could indicate that water is stuck to the surface or that we are not detecting water (H2O),

but the similar hydroxyl (OH) molecule instead. In either case, the global H2O or OH stored in the surface

may be more difficult to extract than previously thought.

3.2 Introduction

Recent remote detections of hydroxyl (OH) or water (H2O) on the lunar surface have reignited interest in the

Moon as a potential reservoir of in-situ resources. Although the lack of volatiles in lunar samples (e.g., Wolf

& Anders 1980) appeared to confirm the long-held belief that the daylit lunar surface is dry (Kuiper, 1952),

surprising observations from 3 independent spacecraft reported a widespread 3 µm spectral feature associated

with OH or H2O on the daylit lunar surface (Pieters et al., 2009; Clark et al., 2011; Sunshine et al., 2009).

More recently, improved spacecraft observations have reaffirmed the daytime OH/H2O signature (Chauhan

et al., 2021), while Earth-based observations detecting a diagnostic H2O signature are the first to distinguish

water from hydroxyl in specific target regions (Honniball et al., 2020).

Presently, most remote investigations of lunar OH/H2O have relied on spectra from the Moon Mineralogy

Mapper (M3) which flew on Chandrayaan-1, due to its high spatial resolution and near-global coverage of

the 2.72 µm (OH) and 3 µm (H2O) absorption features (Pieters et al., 2009; Green et al., 2011). However,

lunar surface emission sharply increases across the ∼2–3 µm spectral region at typical daytime temperatures,

masking these absorptions beneath a “thermal tail” (Figure 3.1). This rising thermal emission is typically

compensated by a simple temperature fit (e.g., Rivkin et al. 2003), however, the shape of the thermal tail

is poorly constrained over the narrow ∼2–3 µm emission range resolved by M3. Radiance in this range is

further confounded by the potentially variable depth and shape of the OH/H2O absorption feature(s) in the

lunar soil which may cover a broad range from 2.67 µm to at least 3.4 µm, according to laboratory irradiation
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experiments (McLain et al., 2021). As a result, interpretations of the strength and behavior of the M3 3

µm band have varied widely depending on the approach to thermal correction (see Lucey et al. 2021 for a

review). Here, we present a physics-based M3 emission correction which independently predicts ∼2–3 µm

emission without assumptions of the underlying spectral shape.
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Figure 3.1: Top: Reflected M3 L1 radiance (black;

extrapolated via exponential decay >2.5 µm) and sum

of reflected and blackbody emission curves 300–400 K

(the 400 K blackbody curve shown in red for refer-

ence). Bottom: the same synthetic spectra (solid lines)

with a broad 5% absorption feature centered at 3 µm).

Errorbars estimated at 10% of radiance (maximum M3

radiometric uncertainty Green et al. 2011).

Previous M3 thermal emission corrections may

have varied in their interpretations due to their ap-

proach to accounting for surface roughness. Rough-

ness affects the apparent temperature of the lu-

nar surface as a function of solar incidence angle,

wavelength, surface physical properties, and viewing

geometry (Bandfield et al., 2015). Thermal emis-

sion corrections that did not account for roughness

showed variation in the 3 µm feature with solar inci-

dence angle (e.g., with latitude and local time; Clark

et al. 2011; Li & Milliken 2017), while roughness-

based thermal corrections observed a more promi-

nent 3 µm feature that survives the full lunar day

(Wöhler et al., 2017; Bandfield et al., 2018) . Here,

we update the roughness-based thermal emission

correction of Bandfield et al. (2018) and validate

it using daytime emission observations from the Di-

viner lunar radiometer on board the Lunar Recon-

naissance Orbiter (Paige et al., 2010b). The goal

of this study is to examine the diurnal and latitudinal behavior of the widespread M3 3 µm feature when

thermal emission is corrected by a robust surface roughness thermal model.

3.3 Methods

To accurately interpret the 3 µm feature in M3 spectra of the lunar surface, we must account for the thermal

emission contribution which begins to become a significant fraction of surface radiance longward of 2–2.5 µm

at typical lunar daytime temperatures (Green et al., 2011). Diviner emission observations have revealed an

apparent wavelength dependence of surface brightness temperatures which has been attributed to sub-pixel

anisothermality due to surface roughness (Bandfield et al., 2015). Surface slopes smaller than the instrument
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spatial resolution can have large temperature differences between sun and anti-sun facing slopes, causing the

observed emission to deviate from that of an ideal blackbody emitter (Bandfield & Edwards, 2008; Bandfield

et al., 2015). These sub-pixel anisothermalities are insidious on the Moon due to the lack of an atmosphere

and low regolith thermal inertia, allowing centimeter-scale slopes to remain thermally isolated with ∼100s

of K temperature difference (Bandfield et al., 2015). Therefore, accurately predicting radiated emission

from a rough surface at a particular wavelength (e.g., 3 µm in M3 observations) necessitates the use of a

roughness-based thermal model (Bandfield & Edwards, 2008; Bandfield et al., 2018).

Here, we present a model with key updates to the Bandfield et al. (2018) roughness thermal model

which combines a new rough surface raytracing shadowing model than can be coupled with an arbitrary

thermal model to predict emission at a range of viewing geometries and wavelengths. Previous iterations

of the model assumed surface radiative equilibrium and were therefore limited to regions of airless bodies

with near-equilibrium conditions (e.g., the lunar equator near midday;Bandfield et al. 2015, 2018). Here, we

couple our generalized raytracing shadow model with the open source KRC 1D heat diffusion thermal model

(Kieffer, 2013) to predict emission across a wider range of illumination conditions than previously possible.

We describe both halves of the combined model below.

3.3.1 Roughness Shadowing Model

We generalize the raytracing roughness shadowing model of Bandfield et al. (2018) which assumes the Moon

is a Gaussian rough surface (e.g., Shepard et al. 1995; Helfenstein & Shepard 1999; Bandfield et al. 2015;

Wöhler et al. 2017). We generate synthetic self-affine (fractal) rough surfaces using the power spectral

density formulation of roughness (Jacobs et al., 2017). Importantly, this generalized technique produces

smooth random topography and is scale-invariant, eliminating artifacts due to an imposed length scale or

pixel resolution. Adjusting the scale height of the surface alters the degree of roughness and we parameterize

surface roughness as the commonly used root-mean-square (RMS) slope of the surface (Shepard et al.,

1995; Bandfield et al., 2015; Wöhler et al., 2017). Scaling the rough surface to different RMS values, we then

employ a vectorial ray tracing routine to determine the shadowing conditions over a range of solar geometries

(Corripio, 2003).

Ray tracing routines are critical to determining the shadowing conditions at high latitudes/incidence

angles due to the propensity of cast shadowing (shadows cast by other surface slopes), as opposed to geometric

shadowing (the sun dipping below a facet’s local horizon, i.e., solar incidence angles > 90°). We follow the

method of Bandfield et al. (2018) and use our ray tracing routine to produce a statistical shadowing lookup

table relating surface roughness (RMS) and solar incidence to the probability of a surface facet with a given
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orientation being in shadow. Shadow predictions are binned by facet slope (0°–90°) and azimuth (0°–360°) in

2 and 10-degree increments, respectively. The routine was repeated to produce a regularly-gridded lookup

table for synthetic rough surfaces ranging in RMS from 0° (flat) to 50° (very rough) and spanning solar

incidence angles from 0°–90° in 5-degree increments. Due to symmetry of the random rough surface, solar

azimuth is degenerate and can be predicted in 360° as a simple azimuthal rotation of the lookup table at a

given solar incidence. The step sizes of the table were chosen such that it is smooth and shadowing conditions

at a precise solar geometry and RMS roughness can be linearly interpolated from the lookup table. With this

lookup table, the rough surface is parameterized by 450 facet slope and azimuth bins, each with a probability

of being shadowed from a particular solar geometry. To produce the total surface emission, we retrieve the

probability of each facet being shadowed and then must predict a temperature for each, given the local solar

geometry and surface roughness.

3.3.2 Thermal Model

Here, our generalized raytracing shadow model is coupled with the open source KRC 1D heat diffusion ther-

mal model (Kieffer, 2013) to predict emission across a wider range of illumination conditions than previously

possible. KRC (https://krc.mars.asu.edu/) is an efficient and widely used long-heritage thermal model

that allows us to model key lunar thermophysical properties like temperature-dependent conductivity and

specific heat capacity, subsurface layering, density gradients (h-parameter), etc. KRC may also be tuned

to various solar system bodies including Mars, small bodies and icy satellites and therefore the method-

ology presented here can be readily extended to roughness investigations of other bodies. We assess the

effectiveness of the KRC thermal model for lunar temperature predictions through comparisons to Diviner

observations.

To predict the total thermal emission of a rough surface given a particular geometry, we must predict

the temperatures of all surface facets under a range of illumination conditions. Our model assumes that

each facet is thermally isolated and therefore conduction between facets is negligible (on the Moon, this

occurs at the cm-scale;Bandfield et al. 2015). We may then use an arbitrary thermal model to predict the

temperature of each facet (binned by slope and azimuth as above) and sum the emission contribution of all

facets under a given set of surface and illumination conditions. Here, we use the open source KRC 1D heat

diffusion thermal model (https://krc.mars.asu.edu/Kieffer 2013). KRC is an efficient and widely used

long-heritage thermal model that allows us to model key lunar thermophysical properties like temperature-

dependent conductivity and specific heat capacity, subsurface layering, density gradients (h-parameter), etc.

KRC may also be tuned to various solar system bodies including Mars, small bodies and icy satellites and
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Figure 3.2: Bolometric temperatures (top) and residuals from Diviner (bottom) predicted by the roughness

thermal model. Points indicate model predictions while lines and errors indicate global mean and standard

deviation Diviner bolometric temperature (Williams et al., 2017). The model may underpredict temperature

at low incidence angles (i ≤ 15°ee; triangles), where Diviner temperatures have been noted to be higher than

anticipated (Vasavada et al., 2012), and the model overpredicts at high incidence (i ≥ 70°ee; squares), where
cast shadows are more influential.
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therefore the methodology presented here can be readily extended to thermal roughness investigations of

other bodies. We construct a 2-layer model in KRC with model parameters drawn from recent observations

of lunar surface properties (Hayne et al. 2017; Feng et al. 2020). See Table B.1 in Appendix B for full list of

KRC model parameters.

For computational efficiency, we use KRC to produce a lookup table of facet temperatures across a range

of illumination conditions and surface properties. The lookup table consists of diurnal surface temperature

predictions (0–24 hours local time, 60 steps per hour) across a range of albedos (0.04–0.24 in steps of 0.02),

latitudes (-85°–85° in 5° increments), solar longitudes (Ls; 0°–360° in 4° increments), surface slope (0°–90° by

5° increments) and surface azimuth (0°–360° by 20° increments). At runtime, we linearly interpolate between

these these nearly 2 billion pre-computed surface temperatures to predict the precise facet temperature of

each slope/azimuth combination given local time, latitude and Ls, and albedo.

To predict the temperatures of shaded surface facets, we must distinguish between geometric and cast

shadows. Facets oriented >90° from from the sun are in geometric shadow (pre-sunrise or post-sunset)

and are simply assigned the KRC-predicted nighttime temperature at the facet local time. However, our

temperature lookup table cannot predict the temperature of facets in cast shadow (facets which would

otherwise be illuminated but lie in the shadow of a taller facet). For facets in cast shadow, we apply a simple

cooling approximation based on the average fraction of the day, f , that a facet remains in shadow. We may

then compute the time spent in shadow, tillum as:

tillum = f · (tloc − tdawn) (3.1)

where tloc is the facet local time and tdawn is facet sunrise time. The cast shadow temperature at

tloc is then assumed to be cooled linearly from its last illuminated temperature to its minimum daytime

temperature:

Tcs = f · T (tillum) + (1 + f) · T (6) (3.2)

This is a simple first order approximation for the aggregate cooling behavior of facets in cast shadow.

However, facets may move into and out of shadow several times throughout a lunar day or cool below the

minimum facet temperature if remaining in cast shadow for most of the lunar day (particularly true of

permanently shaded regions near the lunar poles which are in perpetual cast shadow and would be much

colder than Tcs). We find that f=1% results is appropriate temperature predictions across much of the lunar

surface (Figure 3.2). Long cast shadows in the polar regions are primarily due to macroscopic topography

rather than cm-scale roughness and are therefore outside the scope of this work.
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Finally, total radiated emission is computed as the weighted sum of emission from each illuminated and

shadowed facet bin. We compute the Planck emission as a function of wavelength of each facet assuming

each is a Lambertian surface with an emissivity of 0.96 (Hayne et al., 2017). We then weight each facet bin

by its shadow probability and probability of occurring at the chosen RMS roughness level. We also apply a

correction for the areal fraction of each facet visible from the spacecraft as the cosine of the angle between

each facet and the spacecraft emission vector, such that facets oriented away from the spacecraft do not

contribute and those oriented directly towards the detector contribute the most. Finally, we maintain the

re-radiation approximation developed in Bandfield et al. (2018) to account for emission between facets. The

result is an emitted radiance spectrum which accounts for lunar surface roughness.
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Figure 3.3: Equatorial model predicted (morning, blue; afternoon, orange) over Diviner observed (black)

anisothermality (channel 4 – channel 7 brightness temperature;Williams et al. 2017). The roughness thermal

model accurately predicts the onset of anisothermal effects with increasing incidence well within Diviner

standard deviations.
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3.3.3 Model Validation Approach

We validate the updated roughness thermal model through comparisons to thermal observations from the

Diviner lunar radiometer (Paige et al., 2010b). To test model performance at a range of latitudes and

incidence angles, we compare model temperatures to the Williams et al. (2017) Diviner global average

bolometric temperatures (Figure 3.2). We simulate global average temperatures by predicting rough emitted

radiances for 7–17h local time in 1-degree latitude / longitude bins with albedos drawn from a published

global thermal albedo map (Feng et al., 2020). RMS roughness and emissivity were held constant at 19°

and 0.96, respectively (Bandfield et al., 2015, 2018). For comparison, we convolved our predicted emitted

radiance spectra with the Diviner filter functions to predict individual channel 3 through 9 (spanning 7.8–400

µm) brightness temperatures (Paige et al., 2010b). From the brightness temperatures, we also computed

Diviner-like broadband bolometric temperature with the standard formula described in Paige et al. (2010a).

We also compute anisothermality as the difference between predicted channel 4 and channel 7 brightness

temperatures. Diviner channel 4 (8 µm, near the peak of lunar daytime emission) and Diviner channel

7 (25–41 µm, thermal IR) are well suited for measuring anisothermality (Bandfield et al., 2015) and we

compare our model predictions to the Williams et al. (2017) channel 4 minus channel 7 globally averaged

measurements (Figure 3.3).

3.3.4 Application to M3 data

To process M3 spectra, we use the updated USGS and Boardman 2017 (“Step-2”) geometry (Gaddis et al.,

2016; Malaret et al., 2019) to determine the local solar incidence, azimuth and spacecraft emission and

azimuth angles. We adopt a constant RMS roughness value of 19° and emissivity of 0.96 which accurately

predict Diviner anisothermality across a range of latitudes and incidence angles (Figures 2–3). We draw

hemispherical thermal albedo linearly interpolated from the microwave albedo maps produced by (Feng

et al., 2020). We then run our roughness thermal model to predict radiated emission given the albedo and

bidirectional geometry of each pixel of M3 data. To produce an unbiased independent estimate of emission,

we assume a constant emissivity of 0.96 which best matched Diviner observations (Figures 1-2) rather than

deriving emissivity from the spectrum by assuming Kirchoff’s Law (Bandfield et al., 2018; Wöhler et al.,

2017). We then subtract the model-predicted radiated emission at each wavelength from the total M3 level

1 radiance and apply the standard M3 photometry and statistical polishing steps to derive reflectance values

directly comparable to PDS level 2 reflectance (as generated by the Clark et al. 2011 method). These

thermally corrected spectra are then used to investigate the variability of the 3 µm feature across latitude

and local time.
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3.4 Results

3.4.1 Model Validation

Our roughness thermal model accurately predicts Diviner bolometric temperatures (Williams et al., 2017)

across a range of roughness conditions (Figure 3.2). Our predictions are consistent to 2 K spanning negligible

roughness (∼15° incidence) to high roughness conditions (∼70° incidence). Our model may under-predict

Diviner bolometric temperatures at low solar incidence (<15°), where Diviner observations exceed expected

tempertures at radiative equilibrium, perhaps due to directional emissivity effects (Vasavada et al., 2012).

Our model prediction exceed Diviner bolometric temperatures at solar incidence angles larger than 75°,

where large-scale topographic effects (larger than the cm-scale roughness modeled here) begin to dominate

the shadowing conditions of the surface. A key assumption of this work is that macro-scale topography is

not the dominant cause of the anisothermality since this would necessitate localized raytracing, which is

outside the scope of this work. We indicate plot regions outside the primary model domain (15° < inc <

70°) with shading for the remainder of this work (e.g. Figure 3.3).

Although Diviner bolometric temperatures approximate the kinetic temperature of the surface under

nighttime or low roughness conditions, they mask the wavelength-dependent emission introduced by subpixel

anisothermality in daytime observations. Assuming an emissivity of 0.96 and an RMS roughness value of

19°, our roughness thermal model predicts the onset and magnitude of Diviner channel 4 and channel

7 brightness temperature differences reported by Williams et al. (2017), well within standard deviations

(Figure 3.3). We note that the anisothermality is asymmetric around noon, yielding greater residuals in the

morning relative to the afternoon. The global averages of Williams et al. (2017) also exhibit much more

scatter at incidences larger than 75°, indicating macro-scale shadowing effects are more significant than

global roughness effects at very high incidence. Therefore, we find good agreement in predicted bolometric

temperature and anisothermality up to ∼75° solar incidence.

We compare our model-predicted 3 µm brightness temperatures to those predicted by previous M3 ther-

mal corrections (Figure 3.4). We removed topography >15° and chose a mare region that had repeat coverage

by M3 at multiple local times. We show each correction as a residual from Diviner channel 4 brightness

temperature queried within 0.5 h of local time. We find that the M3 level 2 temperatures (Clark et al., 2011)

significantly under-predict surface temperature, while Li & Milliken (2017) and (Wöhler et al., 2017) are

comparable to Diviner observations. The roughness thermal model presented here predicts higher bright-

ness temperatures than observed by Diviner channel 4 (8.25 µm) in each case. This is expected from the

inverse correlation between brightness temperature and wavelength due to anisothermal effects introduced

by roughness (Bandfield et al., 2015).
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Figure 3.4: Residuals of modeled 3 µm brightness temperature from this work and 3 previous studies

relative to Diviner 8.25 µm (channel 4) brightness temperature. The roughness thermal model predicts

higher brightness temperatures at 3 µm relative to 8.25 µm, consistent with a negative trend in brightness

temperature with increasing wavelength (Bandfield et al., 2015). Brightness temperatures computed by three

previous M3 thermal corrections are consistently lower than those predicted here (Clark et al., 2011; Li &

Milliken, 2017; Wöhler et al., 2017).
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3.4.2 Corrected M3 Data

We apply our validated roughness thermal model to correct M3 observations at a variety of solar incidence

angles and latitudes to evaluate variability in the 3 µm feature. We compute the 3 µm integrated band

depth (IBD3µm) used previously to look for variation in the M3 3 µm feature (Wöhler et al., 2017; Grumpe

et al., 2019). We compute IBD3µm consistently with Grumpe et al. (2019) as the integrated area below

channels 78–84 (2.697–2.936 µm) after removal of a linear continuum fit to channels 74–77 (2.537–2.657 µm),

expressed as a percentage. While useful for comparing relative strength, we note that this band depth should

not be interpreted as the maximum depth of the feature since M3 did not have the spectral range to sample

the entire 3 µm feature. spectral range. A direct comparison of IBD3µm reveals a much stronger absorption

than that derived by Li & Milliken (2017), both in the morning and at midday (Figure 3.5). We compute

the average IBD3µm across latitude and local time and observe a strong feature which appears invariant with

latitude and solar incidence angle within standard deviations (Figure 3.6).

3.5 Discussion

3.5.1 Lunar Surface Roughness and Directional Emissivity

The updated roughness thermophysical model presented here accurately predicts Diviner bolometric tem-

peratures and anisothermality as viewed at nadir with solar incidence angles from 15° to ∼70°. A uniform

RMS roughness of 19° and emissivity of 0.96 appears to best fit Diviner bolometric temperatures as well as

channel 4 minus channel 7 anisothermality (Williams et al., 2017). These parameters are nearly identical to

the 0.95 emissivity and 18° RMS used in the earlier iteration of this model (Bandfield et al., 2018). However,

our updated shadowing and 1D thermal model extend the model domain to higher latitudes and local times

(up to ∼70° between local times 7-17h). Notably, the roughness derivation in our model is smaller than

values derived by Rubanenko et al. (2020) who used analytical expressions of directional emissivity on gaus-

sian rough surfaces at radiative equilibrium to derive averages of 30° and 37° roughness values for the maria

and highlands, respectively. The lower roughness predicted by our model may be due to the difference in

emissivity between the two models; while Rubanenko et al. (2020) took a directional emissivity approach, our

model aimed to model nadir-observed anisothermality as purely a function of roughness at constant emissiv-

ity. It has also been suggested that the thermal excess observed in low incidence nadir Diviner observations

is due to directional emissivity (Vasavada et al., 2012), which may explain the our model underpredicting

bolometric temperature at low incidence (Figure 2). The ongoing Diviner Emission Phase Function off-nadir

observation campaign (Warren et al., 2021) aims to better quantify the directional emissivity of the lunar
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Figure 3.5: IBD3µm at multiple local times in M3 data thermally corrected by Li & Milliken 2017 (left)

and this work (right). Regions with large topographic slopes (>15°) are excluded. Mean spectra across the

scene show deeper 3 µm absorptions in roughness-corrected spectra at all local times.
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surface which will be a boon to this and similar bidirectional thermal models in the future.

3.5.2 Limitations of predicting temperature at 3 µm
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Figure 3.6: IBD3µm from roughness-

corrected M3 spectra averaged across lat-

itude and local time. We find no signifi-

cant increase in IBD3µm with latitude, local

time, or solar incidence angle.

We apply our roughness thermal model to predict the bright-

ness temperature at 3 µm to independently constrain the ther-

mal emission relevant to M3 spectra. At present, the emis-

sion characteristics of the lunar surface at 3 µm are poorly

understood, due in part to 3 µm being a critical region where

lunar surface radiance transitions from reflectance-dominated

to emission-dominated at typical daytime temperatures (Fig-

ure 3.1). We also lack spacecraft observations with the range

of incidence and phase angles needed to constrain directional

emission effects at 3 µm. Furthermore, although M3 has the

greatest spatial coverage to date, it lacks the spectral range

to isolate the 3 µm feature and predict temperature from the

onset of the emission tail longwards of 3 µm.

Unlike previous corrections, our approach to predicting 3

µm emission is an independent physics-based emission model.

The emission at a particular wavelength is the weighted sum of

emission from sub-pixel facets at a given orientation to the sun

and the detector and a probability of being shaded. Assuming

that these cm-scale rough surface facets are Planck-like emit-

ters with constant emissivity, the model reproduces the bolo-

metric and anisothermal temperature differences observed by

Diviner and is therefore well validated from orbit at thermal

infrared wavelengths. Our model-predicted brightness temper-

atures at 3 µm rely on the simple assumption that roughness

behaves similarly in the near-infrared as it does in the thermal

infrared. Since the thermal skin depth is shallower at 3 µm

than at 8+ µm, our Diviner-derived RMS roughness may dif-

fer from the roughness influencing emission at 3 µm. However,

Guo et al. (2021) found that roughness appears to increase at sub-centimeter length scales. Therefore, our
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derivation of the 19° RMS slope roughness derived from Diviner wavelengths is a conservative estimate of

roughness at 3 µm and greater roughness values would produce larger anisothermal effects than those re-

ported here. If future near-infrared observations reveal negligible anisothermal effects in the 3–5 µm region,

an updated physical mechanism would be required to explain the surprising homogeneity in the near-infrared

despite the well-established anisothermal effects observed at longer wavelengths.
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Figure 3.7: Equatorial model-predicted brightness tem-

peratures at 3, 4.5, and 4.85 µm over local time. The surface

is nearly isothermal (< 1 K) for incidence angles < 45° in the

4.5–4.85 µm range (black line). However, larger anisother-

mality is predicted between 4.5 and 3 µm, increasing with

incidence (dashed line).

Ongoing and planned missions may offer in-

sights into surface emission characteristics at

3 µm. Initial results from the Chandrayaan-

2 IIRS spectrometer appear to show a lack

of anisothermality in the 4.5–4.85 µm region

(Chauhan et al., 2021; Verma et al., 2022).

When an isothermal temperature derived at

these wavelengths is applied to remove emis-

sion at 3 µm, IIRS data appear to show a

more prominent 3 µm feature with increasing

latitude, similar to observations of Li & Mil-

liken (2017) and contrary to the observations

reported here. Notably, our roughness ther-

mal model is in agreement, predicting negligi-

ble anisothermality between 4.5 and 4.85 µm

(black line; Figure 3.7). However, when pre-

dicting anisothermality between 3 and 4.5 µm,

our roughness thermal model predicts 1–10 K of anisothermality, increasing with incidence angle (dashed

line; Figure 3.7). Therefore, the isothermal correction described in Verma et al. (2022) may not capture

roughness effects at high solar incidence angles, resulting in a variable 3 µm feature with latitude. Upcoming

missions like Lunar Trailblazer (Ehlmann et al., 2022) will collect co-boresighted observations in the near-

and thermal-infrared under a variety of bidirectional geometries. Such missions will be critical for charac-

terizing roughness effects at 3 µm and unambiguously investigating the behavior of widespread OH/H2O on

the lunar surface.
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3.5.3 Comparison with previous 3 µm predictions

Independent thermal corrections of M3 data have resulted in a range of interpretations of the diurnal nature

of the 3 µm feature, spanning fully mobile to fully static. The aim of each thermal correction is to remove

emission at 3 µm, therefore we compare the 3 µm brightness temperatures (or the derived 3 µm brightness

temperature inferred from the total removed emission). Relative to the original PDS Level 2 thermal cor-

rection (Clark et al., 2011), we found a greater 3 µm brightness temperature across all conditions, similarly

to previous updated M3 thermal corrections (Figure 3.4). We find that our radiance predictions result in

apparent 3 µm brightness temperatures that are consistently higher than previous corrections and Diviner

8.25 µm brightness temperatures. In Figure 3.5, we compared IBD3µm predicted by our roughness thermal

model and the thermal correction of Li & Milliken (2017). Since our model predicts greater radiance in

general, we observe a stronger 3 µm absorption both spatially and temporally than Li & Milliken (2017). In

general, IBD3µm predicted by our model (5–15%) is in agreement with the range reported by Wöhler et al.

(2017); Grumpe et al. (2019), indicating consistency between our approaches to correcting for roughness.

However, Grumpe et al. (2019) reported a partially mobile 3 µm feature and lower IBD3µm in the maria. In

contrast, our model predicts no significant variation in IBD3µm across all local times, latitudes and in both

the mare and highlands regions modeled here (Figure 3.6).

3.5.4 The nature of widespread lunar OH / H2O

Our model predicts a deep, prominent 3 µm absorption feature throughout the lunar day that has previous

been attributed to OH at crystal defect sites (Bandfield et al., 2018). In contrast, Li & Milliken (2017)

found that the 3 µm absorption feature is absent during the day and attributed this to surface H2O fully

mobilizing on diurnal timescales, while Wöhler et al. (2017) reported a partially mobile 3 µm feature and

inferred that a combination of a tightly locked source and diurnally varying H2O are responsible. Recently,

solar wind irradiation of lunar soils has been shown to produce a deep and broad OH absorption which

engulfs the 3 µm region and is stable at high temperature, precluding the need of H2O to explain the remote

observations (McLain et al., 2021). However, independent confirmation that some part of the 3 µm feature is

likely due to H2O recently came in form of SOFIA observations which observed the diagnostic 6 µm emission

feature attributed to H2O rather than OH (Honniball et al., 2020). As such, the relative contributions of

OH and H2O to the 3 µm feature remain unclear. Our observations support a strong 3 µm feature which

does not vary on diurnal timescales. This could indicate solar-wind-induced OH dominates any observable

H2O signature in the 3 µm spectral region, or that a combination of strongly bound OH and H2O both

contribute. Our observations are ambiguous with respect to the source of the 3 µm feature, but future work
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correlating the remote 3 and 6 µm features or in-situ measurements of OH and H2O content of the regolith

would help resolve this outstanding question.

3.6 Conclusions

Interpretations of the lunar 3 µm OH / H2O feature have varied depending on the approach used to remove

thermal emission from Moon Mineralogy Mapper (M3) observations. Surface emission is complicated by

anisothermality below the M3 spatial resolution due to surface roughness. At moderate solar incidence

angles and latitudes, roughness causes observed surface emission to vary as a function of wavelength and

incidence angle, due primarily to local shadowing conditions below the detector resolution. We update and

generalize the roughness thermal model developed by (Bandfield et al., 2015, 2018) to accurately predict and

remove emission from M3 spectra.

The roughness thermal model described here accurately reproduces Diviner temperature observations

across a range of latitudes and local times in 15°–70° of solar incidence. The model combines a raytracing

shadowing model with a 1D thermal model to predict the illumination conditions and temperatures of

sub-pixel surface elements. The roughness open-source Python model (Tai Udovicic et al., 2021b) has

been generalized to be applicable to any rough planetary surface with Gaussian roughness. At extreme

incidence angles > 70° (e.g., at dawn/dusk or near the poles), large-scale topography begins to dominate local

shadowing conditions, which would necessitate a targeted rather than the statistical approach to roughness

modeling presented here.

M3 spectra corrected with our roughness thermal model contain a deep and broad 3 µm absorption

feature which persists across all observed local times and latitudes. With no observed diurnal variability,

our results favor a strongly bound source of the OH / H2O feature. While this model was validated with

and applied to nadir observations, new observations are needed to constrain the directional characteristics

rough airless surfaces, particularly in the near-infrared. Our results indicate that surface roughness is an

important consideration when interpreting infrared observations of planetary surfaces and bi-directional

effects of roughness should be incorporated into future thermal emission models.

3.7 Open Research

The roughness Python package is open source and publicly available on GitHub (https://github.com/

NAU-PIXEL/roughness) for use under the MIT license (https://doi.org/10.5281/zenodo.5498089; Tai Udovi-

cic et al. 2021b). Data and code required to reproduce each figure is available from TBD. Moon Min-

eralogy Mapper (M3) and Diviner Lunar Radiometer data are available from the Planetary Data System

49

https://github.com/NAU-PIXEL/roughness
https://github.com/NAU-PIXEL/roughness
https://doi.org/10.5281/zenodo.5498089


(https://pds.nasa.gov/).

3.8 Acknowledgements

This work was supported by the NASA Lunar Data Analysis Program (15-LDAP15 2-0023, PI: Bandfield,

Subsequent PI: Farrand). The authors would like to thank L. Gaddis, S. Li, C. Wohler, K Wohlfarth and

the Diviner Team for assistance accessing and processing the data used in this work.

50

https://pds.nasa.gov/


Chapter 4

Manuscript III: Buried Ice Deposits in Lunar Polar Cold Traps were Disrupted
by Ballistic Sedimentation

Christian J. Tai Udovicic1, K. R. Frizzell2, G. R. L. Kodikara3, M. Kopp4, K. M. Luchsinger5, A. Madera2,
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This a preliminary version of an article submitted for publication in Journal of Geophysical Research:
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version derived from it.

4.1 Abstract

The NASA Artemis program will send humans to the lunar south polar region, in part to investigate the

availability of water ice and other in-situ resources. While trace amounts of ice have been detected at the

surface of polar permanently shadowed regions (PSRs), recent studies suggest that large ice deposits could

be stable below cold traps in the PSRs over geologic time. A recent study modeling the rate of ice delivery,

ejecta deposition and ice loss from cold traps predicted that gigatons of ice could be buried below 100s of

meters of crater ejecta and regolith. However, crater ejecta vigorously mix the target on impact through

ballistic sedimentation, which may disrupt buried ice deposits. Here, we developed a thermal model to predict

ice stability during ballistic sedimentation events. We then modeled cold trap ice and ejecta stratigraphy

over geologic time using Monte Carlo methods. We found that ballistic sedimentation disrupted large ice

deposits in most cases, dispersing them into smaller layers. Ice retention decreased in most cases, but varied

significantly with the sequence of ejecta delivery, particularly from basin-forming events. Over many model

runs, we found that south polar craters Amundsen, Cabeus, Cabeus B, and Idel’son L were most likely to

retain large deposits of ice shallow enough to be detectable with ground-penetrating radar. We discuss these

1Northern Arizona University, Department of Astronomy and Planetary Science, PO Box 6010, Flagstaff, AZ 86011, USA
2Rutgers University, New Brunswick-Piscataway, NJ
3University of Wisconsin-Milwaukee, Milwaukee, WI
4Boston College, Newton, MA
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findings in the context of the imminent human exploration activities at the lunar south pole.

Plain Language Summary

Some craters near the South Pole of the Moon contain permanently shadowed regions (PSRs) which stay

cold enough to trap water vapor as ice. Recent studies have predicted that large amounts of ice could be

buried under thick protective layers of lunar soil in the PSRs. Lunar soil is mainly transported by large

impacts which launch soil and boulders up to hundreds of kilometers. However, when these projectiles land

they have destructive effects and may melt or redistribute buried ice. We simulated this process, called

ballistic sedimentation, and predicted the amount of ice it removes. We also simulated ice and soil deposits

over billions of years to test how much ice is lost to ballistic sedimentation over time. We predicted which

PSRs are most likely to have ice near enough to the surface to detect in future missions. The upcoming

Artemis program will send crewed and robotic missions to the lunar south pole region, and our work will

help with planning where to land, what instruments to bring, and how much ice we might find.

4.2 Introduction

The NASA Artemis program will include crewed and uncrewed missions to the lunar south polar region

where water and other volatiles are trapped (NRC et al., 2007). Permanently shadowed regions (PSRs)

remain very cold (in some cases, down to 38 K, Paige et al. 2010a) and therefore have the potential to

trap volatiles such as H2O, CO, and S in their solid state. Polar water ice has been detected by a variety

of independent spectroscopic techniques in addition to the Lunar Crater Observation and Sensing Satellite

(LCROSS) impact experiment at Cabeus crater (Colaprete et al., 2010; Li et al., 2018; Hayne et al., 2015).

Lunar water ice is a valuable science target for its potential to constrain early sources of water to the Earth-

Moon system and to investigate the evolution of those reservoirs throughout Solar System history (NRC

et al., 2007). It may also play a critical role as an in-situ resource utilization (ISRU) target for supporting

a sustained human presence on the Moon (i.e., to support human life or as a source of hydrogen and oxygen

to produce other compounds, e.g., rocket propellant; Kornuta et al. 2019).

Lunar polar water ice has been theorized for decades (Watson et al., 1961; Arnold, 1979), but has only

recently begun to be characterized, primarily by remote sensing observations (see Lucey et al. 2021 for a

review). Remote spectroscopic studies have suggested trace amounts of polar water (e.g., Hayne et al. 2015;

Li et al. 2018), but not in massive surface ice deposits like those found at the poles of Mercury (Moses

et al., 1999). Neutron spectroscopy uncovered a polar hydrogen enhancement in the upper meter of regolith,

suggesting up to 1% ice content if water is solely responsible (Feldman et al., 2001; Miller et al., 2014).
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Radar initially failed to find evidence of subsurface ice deposits (Campbell et al., 2006; Neish et al., 2011),

but later found backscatter consistent with increased roughness or ice in the upper meters of PSR regolith

(Spudis et al., 2013). The only diagnostic detection of subsurface polar water ice was recorded during the

LCROSS experiment in which an expended Centaur rocket impacted and ejected material from depths of 6

to 10 meters below the Cabeus PSR (Korycansky et al., 2009; Colaprete et al., 2010; Schultz et al., 2010;

Hermalyn, 2012; Luchsinger et al., 2021). Other studies have also inferred the presence of subsurface ice

based on geomorphology and roughness of PSR surfaces (Deutsch et al., 2020; Moon et al., 2021). Despite

clear evidence that water ice exists at the lunar poles, key questions remain as to the source, distribution,

and abundance of ice, both at the surface and potentially buried in the subsurface.

Several recent studies estimated the total abundance of potentially stable water in the lunar south polar

region, primarily in PSRs (Hayne et al., 2015; Paige et al., 2010a), seasonal cold traps (Williams et al.,

2019), and micro cold traps (Hayne et al., 2021). However, no massive ice deposits have been detected at

the surface (Li et al., 2018; Haruyama et al., 2008; Bickel et al., 2022), perhaps due to the short stability

timescales of surface water ice (Farrell et al., 2019). Water ice in the upper meters is also susceptible to

loss via impact gardening, the net disruptive effect of small impacts into the lunar surface, over geologic

timescales (Costello et al., 2021). A mechanism for preserving ice at greater depths was proposed by Kring

(2020) who recognized that surface ice deposits would be blanketed by ejecta from neighboring craters and

thus remain protected from surface loss. Several punctuated episodes of ice and ejecta deposition could then

lead to a stratigraphic sequence that would remain relatively pristine in the absence of resurfacing processes

other than impact cratering.

The first model investigating ice and ejecta stratigraphy at the lunar poles was developed by Cannon

et al. (2020). Through a Monte Carlo approach, they showed that ejecta blanketing of cold traps could

preserve mining-scale ice deposits over geologic time. However, that work neglected the effects of ballistic

sedimentation, the vigorous mixing of ejecta with local materials, which may rework and volatilize ice

rather than strictly preserving it (Kring, 2020). In this work, we seek to understand the effects of ballistic

sedimentation on lunar polar ice and ejecta stratigraphy. In order to address this question, we developed

a simple thermal model to account for volatilization in a particular ballistic sedimentation event. We then

developed a Monte Carlo polar ice and ejecta stratigraphy model using the same framework of Cannon et al.

(2020). In addition to ballistic sedimentation, we use the model to explore the effects of basin impacts,

cometary impactors, and solar wind ice deposition. We predict ice retention at key cold trap locations in the

Artemis exploration zone and discuss the potential for subsurface ice exploration near the lunar south pole.
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Figure 4.1: Sequence of events resulting in layered stratigraphy in lunar south pole craters. Greyed out stratigraphy columns

indicate that the column/crater does not yet exist. Notice how the presence and thickness of layers change with time as craters are

formed and geologic events occur. We do not include ice modification processes in this figure or in the MoonPIES model.
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4.3 Methods & Modules

Moon Polar Ice and Ejecta Stratigraphy (MoonPIES) is a Monte Carlo model designed to simulate lunar

polar cold trap stratigraphy resulting from ice delivery, ejecta deposition, and ice removal at the lunar poles.

Our model extends a previous model by Cannon et al. (2020) by introducing basin-scale impacts, ballistic

sedimentation effects, latitude dependent ballistic hop efficiency, and cometary impactors.

4.3.1 Main model

We developed the MoonPIES model to track ice and ejecta layering within permanent cold traps over lunar

geologic time, recording ice delivered, ice lost, and ejecta deposited to target cold traps in 10 Myr intervals.

We limited our study to south polar cold traps found within large permanently shaded craters (Cannon

et al., 2020). Each cold trap was modeled as a 1D column of unit area at the centroid of its permanently

shadowed area (Data Set S1, Appendix C).

At each timestep following its formation age, a given cold trap stratigraphy column was updated in the

following order:

1. Ejecta deposited from basins and craters (possible ballistic sedimentation)

2. Ice deposited (see processes, Figure 4.1)

3. Ice removed due to impact gardening (§4.3.7)

We ran the full MoonPIES Monte Carlo model from 4.25 Ga to the present 10,000 times to generate a

statistical distribution of possible cold trap stratigraphies. Parameters which were varied on each run included

the ages of basins and polar craters (Figure 4.2) as well as the amount of impactor ice deposited in each

timestep (see §4.3.4).

4.3.2 Ejecta deposition

We modeled ejecta emplacement similarly to Cannon et al. (2020) with the addition of basin events (Figure

4.2). We included 24 south polar complex craters (D >20 km) and 27 basins (D >300 km), each dated

previously by crater counting methods (Data Sets S1-S2, Appendix C; Deutsch et al. 2020; Tye et al. 2015;

Orgel et al. 2018). We calculated ejecta thickness (t) as a function of distance (r) and crater radius (R)

using the scaling relationship from McGetchin et al. (1973); Kring (1995):

t =


0.04 for simple craters,

0.14 for complex craters

×R0.74(
r

R
)−3.0±0.5 (4.1)
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Figure 4.2: Absolute model ages of craters and basins (inset) incorporated within the MoonPIES model.

The ages of polar craters were drawn from Deutsch et al. (2020) and Cannon et al. (2020). Lunar epochs

were defined by the ages of the basins, drawn from (Orgel et al., 2018).
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An exponent of -2.8 +/- 0.5 was proposed by Fassett et al. (2011) for basin-size events, but that is within

the uncertainty of Equation 4.1. Two caveats of using Equation 4.1 to estimate ejecta thickness are: 1)

proximal ejecta may be overestimated due to the raised crater rim (Kring, 2007; Sharpton, 2014), and 2)

distal ejecta is heterogeneously distributed (e.g., as discontinuous rays; Gault et al. 1974) due to instabilities

in the ejecta curtain (Melosh, 1989). Because none of the craters or basins in our study overlap each another,

no cold traps lie on or within 1 crater radius of another crater. Furthermore, we restricted ejecta deposition

to threshold distances at which most impacts produce continuous ejecta (Melosh, 1989), setting the threshold

distances to be 4 crater radii for simple and complex craters, for consistency with Cannon et al. (2020), and

5 crater radii for basins (Liu et al., 2020; Xie et al., 2020).

4.3.3 Ballistic sedimentation

Ballistic sedimentation was first formally discussed by Oberbeck (1975) and describes the process by which

ejecta from a primary crater follows a ballistic trajectory and impacts the surface at high velocity, mixing

with local material to form breccias. A side effect of ballistic sedimentation is heating of the mixed ejecta

unit. Because we have not drilled into ballistic sedimentation breccias on the Moon, we use Earth analogues

to constrain the effects of ballistic sedimentation, specifically, the Bunte Breccia Unit within Ries crater in

Germany (Oberbeck, 1975; Hörz et al., 1977, 1983).

Ballistic sedimentation only occurs when ejecta reach the surface with sufficient velocity to brecciate

the target. In the case of Meteor Crater (D=1.25 km; see Kring 2007 for a review), a simple crater on

Earth, continuous ejecta is distributed to distances of about two crater radii beyond the crater rim. Material

deposited at the outer edge of that ejecta blanket hit the surface with a velocity of about 11 m/s, which caused

some radially outward skating across the landscape, but no significant erosion and mixing with substrate

materials or heating. Conversely, the larger Ries crater (D=24 km) has two distinct ejecta units. It contains

a polymict breccia with fragments of solidified impact melt (known as suevite) that has components shocked

to >50 GPa and depositional temperatures between 500 and 900◦C (Kring 2005 and references therein).

The underlying Bunte breccia unit represents the bulk of the ejecta and has components shocked to <10

GPa and was deposited with no significant increase in temperature. The Bunte Breccia is the ballistically

emplaced unit at the Ries Crater (Hörz et al., 1977, 1983). The Bunte Breccia extended from near the crater

rim to at least 36 km from the crater center, about 3 times the basin radius (see Kring 2005 for a review).

We therefore expect the onset of ballistic sedimentation to occur at an ejecta kinetic energy intermediate to

those at Meteor and Ries craters.

Since ballistic sedimentation is capable of introducing significant heating and mixing to target materials,
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we modeled it as an ice loss process as a function of ejecta kinetic energy, temperature, and depth of mixing.

Onset of ballistic sedimentation

To estimate a threshold kinetic energy for the onset of ballistic sedimentation, we computed the relevant

ejecta energy of the Bunte Breccia deposits at the Ries impact structure (Kring, 2005). We computed

ejecta mass per unit area as the product of ejecta density and thickness, assuming an ejecta density of

ρ = 2700 kg/m3 for Malmian limestone (Bohnsack et al., 2020) and calculating thickness using Equation

4.1 (RRies=12 km). Ejecta velocity at impact was computed using the ballistic formula for a spherical body

(Vickery, 1986), derived from the half-angular distance of travel, ϕ = r/2Rp, which is related to velocity (v)

and the ejection angle (θ) by:

tanϕ =
v2sinθcosθ

gRp − v2cos2θ
(4.2)

where g is gravitational acceleration and Rp is planet radius. Solving for velocity gives:

v =

√
gRptanϕ

sinθcosθ + cos2θtanϕ
(4.3)

Ballistic kinetic energy is then given by KE=mv2 and is a function of r, Rp, and θ. Using the 4 crater

radii extent of our ejecta deposits and Equation 4.3 for the Earth (g = 9.81 m/s2; Rp = 6371 km) and

assuming the most likely ejecta angle of θ = 45o, we find that the minimum kinetic energy that produced

ballistic sedimentation at the Ries impact structure was ∼1500 MJ/m2 (Figure 4.3).

For comparison, we repeated the above calculation for the 1 km Meteor Crater where ballistic sedimen-

tation has not been observed (see Kring 2007 for a review). The maximum ejecta kinetic energy was ∼10

MJ/m2 at Meteor crater, indicating the onset of ballistic sedimentation is between 10–1500 MJ/m2.

The lunar case for ballistic sedimentation as a function of crater size is made by Oberbeck (1975) who

observed the onset of hummocky textures in the continuous ejecta of craters larger than 4 km in diameter.

Repeating the kinetic energy calculation for the Moon assuming an anorthositic target (ρ = 2700 kg/m3;

g = 1.624 m/s2; Rp = 1737 km), we found the kinetic energy for Meteor Crater was smaller than the 4 km

lunar crater (Figure 4.3). If the hummocky textures observed by Oberbeck (1975) are indicative of ballistic

sedimentation, we would expect the Meteor Crater impact to be energetic enough to produce these deposits.

However, since the smallest known crater to produce ballistic sedimentation deposits is the Ries impact, we

use it as our model threshold. The derived ∼1500 MJ/m2 at 4 crater radii corresponds to lunar craters D ≥

20 km, and therefore we model ballistic sedimentation for impacts larger than 20 km which encountered a

cold trap within 4 crater radii.
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Ballistic sedimentation depth

We modeled the depth of influence of ballistic sedimentation events using the local mixing model introduced

by Oberbeck (1975) and updated by Petro & Pieters (2004). The local mixing ratio, µ, of local material

to ejected material was modeled as a function of distance traveled, r in km (Oberbeck, 1975), with an

adjustment for µ > 5 (Petro & Pieters, 2006):

µ =


0.0183r0.87 µ ≤ 5

0.0183
2 r0.87 + 2.5 µ > 5

(4.4)

We then defined the ballistic sedimentation depth (δ) as the product of ejecta thickness (Equation 4.1)

and mixing ratio (Petro & Pieters, 2004):

δ = t× µ (4.5)

The mixing ratio can also be expressed as the fraction of ejecta relative to total (ejecta and local) material

as:

fejecta =
1

1 + µ
(4.6)

We parameterize ice loss to ballistic sedimentation as a function of fejecta and the temperature of the

incoming ejecta.

Fraction of ice volatilized

We used a 1D heat flow model to derive the fraction of local material volatilized (heated beyond a constant

ice stability temperature), given the amount of ejecta delivered (fejecta) and the initial ejecta and target

temperatures.

The 1D heat flow model assumes vigorous mixing and rapid equilibration, such that the ejecta and

local material primarily exchange heat through conduction rather than radiation (Carslaw & Jaeger, 1959;

Onorato et al., 1978). We then solve the 1D heat flow equation (Carslaw & Jaeger, 1959) and track the

maximum temperatures encountered during equilibration. We summarize the model in Equations 4.7 – 4.8:

K =
κ(T )

ρCp(T )
(4.7)

Ti,n+1 =
K∆t

(∆χ)2
Ti−1,n +

K∆t

(∆χ)2
Ti+1,n − (2× K∆t

(∆χ)2
Ti,n), (4.8)
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where K is the thermal diffusivity, κ(T ) is thermal conductivity, ρ = 1800 kg m−3 is regolith density, Cp(T )

is the heat capacity, ∆t = 1 ms is the time step, ∆χ = 10 µm is the spatial scale, and i, n are the spatial

and time steps, respectively, with regolith properties drawn from (Hayne et al., 2017).

To compute the fraction of water ice volatilized (“melt fraction” hereafter), we chose an ice stability

temperature of 110 K (Hayne et al., 2015; Fisher et al., 2017). We initialized the 100 pixel 1D model to a

PSR temperature of 45 K (typical surface temperatures of lunar polar cold traps; Paige et al. 2010a), and

varied the fejecta and temperature of ejecta pixels from 0–100% and 110–500 K, respectively. We ran the

thermal model until equilibration (i.e., all elements within 1 K of each other), or until all elements exceeded

110 K (melt fraction = 1). We defined the melt fraction as the fraction of local elements that exceeded 110

K in any time step. We randomized the initial ejecta positions and ran the model 50 times for each fejecta

and ejecta temperature combination, reporting the mean and standard deviation melt fractions of all runs

(Figure 4.4; Data Sets S3-S4, Appendix C).

Ice lost due to ballistic sedimentation

To predict ice loss in a particular ballistic sedimentation event, we estimated the ejecta and PSR temperatures

at the time of deposition. Hydrocode simulations by Fernandes & Artemieva (2012) indicated that ejecta

temperatures increase with distance from a basin impact due to shock heating, but primarily beyond the

4–5 radius distances modeled here. Proximal ejecta temperatures were much more sensitive to the choice of

subsurface thermal profile from about 260 K in the “present-cold-Moon” scenario to 420 K for the “ancient-

hot-Moon” (Artemieva & Shuvalov, 2008). For a conservative treatment, we chose 260 K as the ejecta

temperature basin impacts, but note that there is little change in our predicted melt fraction from 260–420

K (Figure 4.8). For smaller cratering events (non-basin impacts from polar crater), we chose an ejecta

temperature of 140 K, a typical sub-surface polar regolith temperature (Vasavada et al., 1999; Feng &

Siegler, 2021). For each ballistic sedimentation event, we then retrieved fejecta (Equation 4.6) and ejecta

temperature (Figure 4.4) and computed the depth of influence, δ (Equation 4.5). We assumed that the

derived melt fraction of ice was volatilized in each layer within δ of the surface. All volatilized ice is assumed

to be lost from the stratigraphy column in the ballistic sedimentation event since redistribution and upwards

migration of ice is outside the scope of this work. We discuss the implications of this simple treatment of

ballistic sedimentation ice removal in §4.5.2. If multiple ballistic sedimentation events occurred in a single

timestep, they were applied in δ order from smallest to largest. The ballistic sedimentation events in our

model produced δ values ranging from meters to multiple kilometers depending on the size of primary impact

and distance to a particular cold trap (Figure 4.3). Our first order approximation of ballistic sedimentation

effects allows us to assess incoming ejecta as a removal process, however a method which more precisely
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Figure 4.4: Ballistic sedimentation melt fraction as a function of initial ejecta fraction (fejecta) and

ejecta temperature. Melt fraction is expressed as the mean (upper left) and standard deviation (upper right)

cold trap material exceeding 110 K in model simulations, computed over 50 runs with random initial ejecta

positions. High temperatures and ejecta fractions result in high melt fractions, as expected. Ranges of melt

fractions are indicated for ballistic sedimentation events resulting from craters (blue) and basins (orange,

present-cold-moon; red, warm-ancient-moon) modeled in this work.
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mixes and redistributes ice may be warranted in future work.

4.3.4 Impact ice delivery

To model ice delivery to the the lunar poles by impacts, we first divide all possible impactors into 6 size

regimes and two classes: hydrated asteroid and comet. Hydrated asteroids in Regimes B–E were modeled

consistently with Cannon et al. (2020) as 24% hydrated C-types with 10% water content by mass, and

adopting consistent fluxes, size-frequency distributions, and crater scaling laws, as summarized in Table

4.1 (Brown et al., 2002; Grün et al., 2011; Mazrouei et al., 2019; Neukum et al., 2001; Ong et al., 2010).

Additionally, we introduce basin impactor (the new Regime F) and cometary impactor (across all regimes)

contributions to polar ice for the first time.

Figure 4.5: Cumulative Kinetic Energy (left) from each of the large age-dated craters, excluding

basins. The kinetic energy contours are plotted over an average solar illumination map of the south pole

(AVGVISIB 75S 120M 201608.LBL; Mazarico et al. 2011). Water ice cold trap extents (right; Landis et al.

2022).

Micrometeorites and comets

We modeled all micrometeorites (Regime A) as cometary based on dynamical models that suggest comets

dominate the smallest impactors at 1 AU (Oberst et al., 2012; Suggs et al., 2014; Pokorný et al., 2019).

For larger impacts, we assumed 5% are cometary, which is a conservative estimate within a typical range
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of 5-17% (Joy et al., 2012; Liu et al., 2015). To predict the total cometary mass delivered, we used the

same scaling laws of Regimes B–F (Table 4.1). We assigned each comet a random velocity from a bi-modal

velocity distribution (Figure C.2) and assumed each comet is 50 wt% water (Whipple, 1950) with a density

of 600 kg m−3 (the density of Comet Shoemaker-Levy 9; Asphaug & Benz 1994).

Regime Population Impact Freq.
Ref.

CSFD
slope

Crater
Diam
(km)

Impactor
Diam
(km)

Crater
Scaling
Ref.

Model
Treatment

A Micro-
meteorites

Grün et al.
(2011)

N/A N/A 10 nm – 1
mm

N/A Averaged

B Small Im-
pactors

Brown et al.
(2002)

-3.82 N/A 10 mm –
3 m

N/A Averaged

C Small sim-
ple craters

Neukum et
al. (2001)

-3.82 0.1 km –
1.5 km

N/A Prieur et
al. (2017)

Averaged

D Large sim-
ple craters

Neukum et
al. (2001)

-1.8 1.5 km –
15 km

N/A Collins et
al. (2005)

Stochastic

E Complex
craters

Neukum et
al. (2001)

-1.8 15 km –
300 km

N/A Johnson et
al. (2016)

Stochastic

F Basins† Orgel et al.
(2018)

N/A ≥ 300 km N/A Johnson et
al. (2016)

Individual

†MoonPIES only

Table 4.1: Cratering Regimes. Regimes A-E are defined following (Cannon et al., 2020). Regime F,

representing basin impactors, was added for this work.

Basins

Basins included in our model (Figure 4.2; Data Set S2, Appendix C) were designated as hydrated C-type,

cometary, or neither at the same probability as other impactors. If a modeled basin impactor was icy, it

delivered ice in the timestep nearest to its age, randomized within model age uncertainties for each run.

Although absolute ages and age uncertainties are debated for several basins, we drew all basin ages from the

same source, Orgel et al. (2018), noting that the sequence of basin ages is more important for generating

an accurate stratigraphy than precise absolute ages. We scaled each basin main ring diameter to transient

diameter using the scaling laws from Croft (1985) and then to impactor diameter following Johnson et al.

(2016). Volatile content and retention rates were predicted consistently with other hydrated asteroids and

comets in the model.

Volatile retention

The fraction of ice retained by the Moon in a hypervelocity impact is primarily a function of the impact

velocity (Ong et al., 2010). We derived a simple power law fit to retention rates computed in impact

simulations by Ong et al. (2010) (1.66× 104v−4.16, where v is velocity in m/s; Figure C.3). For consistency

with Cannon et al. (2020), we retained the assumption that < 10 km/s impacts result in 50% volatile
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retention for asteroid impactors due to incomplete clay mineral heating (Svetsov & Shuvalov, 2015).

Ballistic hopping

At each timestep, global ice delivery was converted to a local cold trap ice mass by employing a ballistic hop

efficiency. The ballistic hop efficiency is defined as the fraction of global ice that comes to rest in a particular

cold trap via ballistic hop random walks. We took the fraction of total water in the ballistic hop simulations

by Moores (2016) and normalized by cold trap area. For cold traps not modeled in Moores (2016), we made

a conservative estimate recognizing that ballistic hop efficiency is related to latitude. For Slater, we took the

average of the nearest latitude craters, Shoemaker, de Gerlache, and Sverdrup. For craters north of Faustini

(87.2◦ S), we set the ballistic hop efficiency to that of Faustini, recognizing that if the latitude trend holds

then this would underestimate the amount of ice transported to and therefore retained within these cold

traps in the model (Figure C.1; Data Set S5, Appendix C).

4.3.5 Volcanic ice delivery

We modeled volcanic ice delivery via a transient atmosphere that deposits ice in polar cold traps (Aleinov

et al., 2019). Volatiles are deposited at a rate predicted by transient atmosphere simulations by Wilcoski et al.

(2021), who found 26% of erupted H2O is able to be deposited in south polar cold traps when accounting for

atmospheric escape and sublimation. This treatment of deposition ignores any effect of ballistic hopping as

the deposited H2O from a transient atmosphere can only persist on the poles and is very quickly sublimated

away elsewhere on the surface (Wilcoski et al., 2021). We used model estimates of Needham & Kring (2017)

for total H2O outgassed from mare volcanic provinces over time. We converted volatile H2O to ice deposited

in the style of Cannon et al. (2020). Although Head et al. (2020) presented smaller estimates of outgassed

volatile mass, our model is insensitive to this choice as neither deposits more ice than is removed by impact

gardening in a given timestep, as seen in Figure 4.6.

4.3.6 Solar wind H+ deposition

We included a treatment of solar wind H+ as a possible source of water in polar cold traps (Arnold, 1979).

We used solar wind-derived H2O mass flux of 2 g/s H2O (Housley et al., 1973; Benna et al., 2019). We note

this may be an overestimate since Lucey et al. (2020) predicted about 1/1000 of the 30 g/s H+ suggested by

Hurley et al. (2017) would be converted to H2O. Additionally, historical solar wind H+ flux may have been

lower when the sun was fainter (Bahcall et al., 2001). However, less than 1 cm of ice is expected per model

timestep given the 2 g/s H2O rate, which is less than is removed by impact gardening each timestep, making
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our model insensitive to a more precise treatment of solar wind ice delivery, illustrated in Figure 4.6.

4.3.7 Ice loss by impact gardening

We model the loss of ice from polar cold traps as a function of the lunar impact gardening rate, similarly

to Cannon et al. (2020). Recent work by Costello et al. (2021) scaled the impact gardening depth by the

historical impact gardening flux, predicting that polar cold traps may be heavily disturbed to 10s of meters

depth, deeper than previously proposed (Costello et al., 2018, 2020). In timesteps where we expect the lunar

impact flux to be approximately constant (3 Ga to present; Neukum et al. 2001), we adopted a present-day

reworking rate of 10 cm per 10 Myr (Costello et al., 2020), consistent with Cannon et al. (2020). At earlier

timesteps, we scale this value by the historical lunar impact flux (Neukum et al., 2001). Figure 6 of Costello

et al. (2021) shows an excess reworking depth prior to 3 Ga of approximately 1% of the relative early impact

flux (Neukum et al., 2001). Therefore we scale the present-day 10 cm depth accordingly, resulting in a

gardening rate of approximately 3 m per 10 Myr in the first model timestep (4.25 Ga). This deeper early

gardening quickly decays with the impact flux to a steady value of 10 cm in each timestep from 3 Ga to

present.
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Figure 4.6: Average ice deposited in each timestep across lunar geologic eras spanned by a MoonPIES

model run (log scale). The bars represent the total ice thickness (blue) as well as ice originating from non-

basin impactors (orange), basin impactors (green), volcanic (red), and solar wind (yellow). Whiskers denote

the maximum and minimum ice delivered in a particular timestep. Shaded regions represent the maximum

ballistic sedimentation depth and impact gardening possible in each era, though on average less than this is

removed because ballistic sedimentation is sporadic and ejecta layers will preserve ice underlying ice.
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At each timestep, we removed all ice present in the predicted gardening depth. Although some ice may

not be completely lost from the Moon following a particular gardening event, the gardening depths we chose

predict total homogenization of the regolith (see Costello et al. 2021 for a detailed discussion). Therefore,

most material to these depths have been disrupted (excavated and re-buried) numerous times. Because our

10 Myr model timesteps are much longer than the expected ∼1000 yr residency time of ice in polar cold

traps (Farrell et al., 2019), homogenization of the gardened layer would allow ample opportunity for all ice

in this layer to be lost. While not all ice escaping a cold trap is lost from the Moon entirely, there is a much

greater chance of it coming to rest in cold traps not large enough to retain a stratigraphic sequence (e.g.,

micro cold traps; Hayne et al. 2021) and therefore are outside the scope of this work.

4.3.8 Randomness and reproducibility

To simulate the delivery of ice and ejecta to target cold traps, MoonPIES uses Monte Carlo methods to vary

the timing and abundance of impacts through lunar geologic history. Consistent with the previous model by

Cannon et al. (2020), ice delivery was driven by impactor size and impactors forming craters smaller than

1.5 km diameter were treated as bulk populations, with fluxes drawn from the literature (see Table 4.1).

However, larger impactors were modeled individually with compositions (hydrated asteroid, unhydrated

asteroid, or comet) and speeds each randomly drawn, affecting the ice delivered and retained in a given

timestep (see §4.3.4). Asteroid speeds were drawn from a Gaussian distribution (µ=20km/s, σ=6km/s).

Comet speeds were drawn from a bimodal distribution of two Gaussians to simulate the Jupiter family and

long period comet populations (µJFC=20km/s, σJFC=5km/s; µLPC=54km/s, σLPC=5km/s) (Chyba, 1991;

Jeffers et al., 2001; Ong et al., 2010). We assume that Jupiter family comets are 7 times as likely as long

period comets, though the precise ratio and its evolution over lunar geologic time are not well constrained

(Carrillo-Sánchez et al., 2016; Pokorný et al., 2019).

To model individual crater and basin events that deliver ejecta to cold traps, we randomly drew ages from

the published crater count model ages (Figure 4.2). Ages were drawn from a truncated Gaussian centered on

the absolute model age with standard deviation being half of the model age uncertainty (or the average of the

upper and lower bounds, if asymmetric). The minimum and maximum ages are fixed at the upper and lower

age uncertainty. Ice delivery was not modeled for individual south polar craters since their contributions

are already included in the complex crater population. However, basins are assigned a probability of being

asteroidal or cometary and a random impact speed to determine ice delivery in a consistent manner with

other impactors. Ejecta deposition and basin ice delivery then occurs during the nearest timestep in the

model to the assigned ages for these individual events.
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For reproducibility, MoonPIES generates a configuration file specifying all parameters used to run the

model as well as the random seed, allowing a given model run to be reproducible. Monte Carlo results

presented here were run on MoonPIES v1.0.0 with random seeds 1-10000 (see Tai Udovicic et al. 2022a for

full documentation).
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Figure 4.7: A comparison of Fautini, Haworth and Cabeus over 3 different Monte Carlo model runs (all

including ballistic sedimentation effects). We note that the cold trap ages and stratigraphic sequence of a

particular run differs due to random variation in ejecta ages and ice delivery. Runs A and B show typical

columns for all three cold traps. In run C, the large ice layer in Faustini and Haworth is the result of a

basin-scale cometary impact, while the absence of layering in Cabeus indicates that it formed later than all

possible ejecta sources.

4.4 Results

The ice layering trends predicted by the MoonPIES model were broadly consistent with Cannon et al. (2020)

when ballistic sedimentation was excluded from the model (e.g., the oldest cold traps often retained “gigaton”

ice deposits). However, when accounting for ballistic sedimentation, such gigaton ice deposits were disrupted

and the quantity of ice retained was reduced. We also found a location dependence of ice retention, with

cold traps nearest to the poles retaining less ice in general when compared to cold traps at lower latitudes.
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We ran the model 10,000 times to generate a distribution of ice retention in each cold trap, with the results

of the Monte Carlo approach shown in Figures 4.7 and 4.9. Figure 4.7 compares the stratigraphic columns

generated for Faustini, Haworth, and Cabeus craters over three different Monte Carlo model runs, while

Figure 4.9 shows the range of possible total ice thicknesses across all 10,000 model runs for the 10 cold traps

in our sample (Data Set S6, Appendix C).

4.4.1 Effects of ballistic sedimentation

Ballistic sedimentation reduced the amount of ice retained within most cold traps modeled in this study.

Figure 4.8 depicts a single run with and without the effects of ballistic sedimentation, while Figure 4.9

depicts total ice thickness retained for 10 cold traps across 10,000 model runs with and without the effects

of ballistic sedimentation. Cold traps were grouped by similar age and sorted by latitude within each group.

When ballistic sedimentation is considered, ejecta from nearby craters and impact basins effectively

removed pre-existing ice within cold traps, resulting in less preserved average ice thickness across all cold

traps. Ballistic sedimentation did not remove ice entirely, but rather reduced the thickness of ice deposits

at and near the surface at the time of ejecta implantation. Although impacts that form basins and complex

craters both have the potential to remove ice due to ballistic sedimentation, basin-sized impacts tended to

be more effective at melting ice through ballistic sedimentation than complex polar craters. Complex polar

craters tended to produce ejecta lacking sufficient kinetic energies at the distances required to reach nearby

polar cold traps, effectively caused a net preservation effect rather than a net ice removal effect. The influence

of ballistic sedimentation was most notable for the oldest cold traps in our sample, Haworth, Shoemaker, and

Faustini. The oldest cold traps retained large ice deposits in nearly all runs without ballistic sedimentation.

After ballistic sedimentation effects were included, ice retention was reduced and more variable, with cold

traps retaining about a tenth of former median total ice thicknesses.

Similarly, Nectarian and Imbrian cold traps saw overall declines in ice retention when including the

effects of ballistic sedimentation, though not as dramatically as observed in the Pre-Nectarian cold traps.

Eratosthenian cold traps formed after the majority of ice was delivered and most large ballistic sedimentation

events occurred and therefore retain little ice regardless of ballistic sedimentation.

4.4.2 Gigaton ice deposits

The term “gigaton deposit” has previously been used to refer to single layer ice deposits that would exceed

109 metric tons of ice if they filled a cold trap with a surface area of at least 100 km2 (Cannon et al.,

2020). Assuming a density of ice of ∼1000 kg/m3, such deposits must be larger than 10 m thick. Pristine
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Figure 4.8: Model stratigraphy columns for the same model run with A) ballistic sedimentation and B)

no ballistic sedimentation. When ballistic sedimentation was accounted for, large pure ice layers were lost

from the base of the oldest cold traps (Faustini, Haworth and Shoemaker). Shallower layers retain a similar

ice % in both cases. Although this is a representative outcome, it should be noted that the absolute quantity

of ice and stratigraphic sequence changes from run to run (Figures 4.7-4.9).
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single-layer deposits exceeding 10 m were rare in most cold traps and absent from others except when early

large ice delivery events occurred in a particular run (Figure 4.8 - 4.7). We investigated the likelihood of

retaining layers of a given thickness at depth over the 10,000 model runs (Figure 4.10). When excluding

effects of ballistic sedimentation, gigaton layers (>10 m) emerged at depths of about 100 m, consistent with

the previous model by Cannon et al. (2020). By contrast, when ballistic sedimentation was implemented,

layers rarely exceeded 10 m and were most commonly < 1 m thick (Figure 4.10).

We also assessed the total ice retention by each cold trap at all depths (Figure 4.9). Without ballistic

sedimentation, we found that the median total ice exceeded 10 m “gigaton” thickness for all Nectarian

and older craters. However, when we accounted for ballistic sedimentation, all craters declined in total ice

retention, with medians near or below 10 m. For Shoemaker, Idel’son L and Amundsen, this decline marked

a shift from >75% of runs producing gigaton levels of ice to <25% exceeding the 10 m threshold. However,

other Nectarian and older cold traps retained 10 m of ice in about 50% of runs. The youngest cold traps

retained the least ice: Imbrian cold traps Slater and Sverdrup rarely exceeded 5 m, while Eratosthenian cold

traps Wiechert J and Shackleton exceeded 1 m in only a handful of runs. In summary, while single layer

gigaton deposits were rare, volumetric gigaton deposits occurred for most older cold traps in about 50% of

runs.
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Figure 4.9: Total ice thickness retained across 10,000 runs for each cold trap grouped by geologic era and

sorted by latitude. The width of each violin is scaled by the total number of runs retaining at least 1 m of

ice. Median and quartiles are indicated as dashed lines. Without ballistic sedimentation, total ice thickness

is greater, particularly for Pre-Nectarian and Nectarian cold traps. The difference in ice retention is smaller

for Imbrian cold traps where few basins and local impacts disturb ice. About 1000 runs retained > 1 m for

Wiechert J and only 3 runs retained > 1 m of ice in Shackleton.
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4.4.3 Gardened layer

The gardened layer (referred to as gardened mantle deposits in Cannon et al. (2020)) we observed near the

surface of most stratigraphy columns ranged in size depending on cold trap location and age. We defined

the gardened layer as any portion of the column influenced by ballistic sedimentation or impact gardening

and containing less than the 100 m “gigaton” ice thickness threshold defined above. For any given cold trap,

the total thickness of the gardened regolith zone varied significantly across Monte Carlo runs. Figure 4.9

demonstrates that the distribution of total ice thickness for 10,000 model runs varies from 1 to 100 m for

Pre-Nectarian and Nectarian cold traps, while younger cold traps tend to retain between 1 to 10 m.

We also observed a slight trend with latitude, finding that median total ice in the gardened layer declines

towards the South Pole. In particular, Faustini, Cabeus B and Cabeus retained the thickest gardened layers

with median total ice of ∼20 m. The smallest gardened layers occurred in the youngest and most poleward

cold traps, namely Shoemaker, de Gerlache, Slater, Sverdrup, Wiechert J and Shackleton, each retaining

<10 m median ice thickness. Wiechert J and Shackleton were the only cold traps which retained <1 m of

total ice in the majority of runs and exceeded this threshold in only 10% and 1% of runs, respectively.

For comparison, we contrasted our results with 10,000 model runs which did not account for ballistic

sedimentation (Figure 4.9). As expected, the total amount of ice retained in each cold trap was greater

when ballistic sedimentation was excluded. In addition, thick, pristine ice layers were disrupted by ballistic

sedimentation, causing the gardened regolith to be much more extensive in this work relative to the previous

model by Cannon et al. (2020).

The distributions of total ice thickness for some of the Nectarian cold traps are bimodal in model runs

without ballistic sedimentation (Figure 4.9), with one concentration of model runs retaining ∼100 m of ice

and another concentration retaining ∼10 m of ice. This bimodal distribution is due to the precise timing

and sequencing of the Nectarian basin ice delivery events that overlap in formation ages. The craters

with bimodal ice thickness distributions form around the same time as several significant basin formation

and ice delivery events, whereas the craters with simple ice thickness distributions have basin formation

and ice delivery events exclusively outside of their age distributions. The bimodal thickness distributions

are therefore attributed to the precise sequencing of basin ejecta delivery, ballistic sedimentation, and ice

delivery around the time of cold trap formation. Therefore, cold trap age and the ages of nearby craters

and basins can distinguish a “gigaton” ice deposit from a thin gardened layer ice deposit for Nectarian cold

traps.

In addition to total ice, we also illustrate the possible distributions of ice with depth for Faustini, Haworth,

Amundsen, Cabeus, de Gerlache, and Slater craters in Figure 4.10 using a kernel density estimation (KDE)
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Figure 4.10: Thickness of ice layers with depth for 10,000 model runs, represented as kernel density

estimation (KDE) contour plots for Faustini, Haworth, Amundsen, Cabeus, de Gerlache, and Slater craters.

Blue contours represent model runs without ballistic sedimentation, and brown contours represent model runs

with ballistic sedimentation and contour centers represent the most likely thicknesses with depth. Shaded

regions indicate “gigaton” zones, where layer thickness exceeds 10 m. For Cabeus, horizontal lines denote

LCROSS maximum excavation depth (Schultz et al., 2010; Luchsinger et al., 2021).
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contour plot of ice thickness vs. depth. The contours represent the number of times an ice layer of the

corresponding thickness was present at the corresponding depth over 10,000 model runs, both with (blue)

and without (brown) ballistic sedimentation effects. Gray boxes in the top two plots indicate the gigaton

deposit zone. In this figure, we have indicated two possible excavation depths from the LCROSS impact for

Cabeus (Schultz et al., 2010; Luchsinger et al., 2021).

For Faustini, Haworth, and Amundsen, the three oldest cold traps, the blue ballistic sedimentation

contours are shifted to the left relative to the brown contours, which represent model runs with no ballistic

sedimentation. The shift in the blue contours represents ice deposits that have been disrupted and reduced

in thickness. Individual ice layers in the gigaton deposit zone, indicated by gray boxes, only occur in some

model runs without ballistic sedimentation, and only for Faustini and Haworth craters. The contour lines

for Cabeus, de Gerlache, and Slater are less affected by ballistic sedimentation. Faustini and de Gerlache

both contain ice deposits within the uppermost 6 m of regolith in some model runs, potentially making these

craters high priority for missions with depth sensitivity greater than 1 m. However, the depth and temporal

resolution of the MoonPIES model limits its ability to predict surface expression of ice.

In Figure 4.11, we present a boxplot of ice concentration for all cold traps within the uppermost 6 m. The

boxes denote the first and third quartiles, while the whiskers denote the 99th percentile, and the individual

points represent outliers above the 99th percentile. At least 75% of model runs predicted no ice retention

in the uppermost 6 m. We calculated how often the cold traps retained 0.3 m of ice in the upper 6 m,

comparable to the ∼5% concentration measured during the LCROSS impact into Cabeus crater (Colaprete

et al., 2010). None of the cold traps met or exceeded this threshold in the majority of model runs (Faustini

and de Gerlache craters were the most likely at 22% and 8% of model runs, respectively). Most cold traps,

including Cabeus crater, only retained 0.3 m of ice in a maximum of 1% of model runs. Therefore, the

MoonPIES model may underpredict ice near the surface, which we discuss in §4.5.2.

4.5 Discussion

4.5.1 Gigaton ice deposit distribution

Previous work by Cannon et al. (2020) described deposits containing up to hundreds of meters of ice as

“gigaton” deposits. When accounting for ballistic sedimentation in the MoonPIES model, we found that

gigaton deposits of ice are rarely large coherent sheets. Instead, modeled stratigraphy columns are more

likely to contain thinner layers that have been disrupted and reduced in size (Figure 4.10). In rare cases, the

total ice thickness retained in our model reached 100 m, typically when large volumes of ice were delivered

by large icy impactors. Ice retention also depended on the precise sequencing of cold trap formation and
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ballistic sedimentation events.
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Figure 4.11: Boxplot of ice retained in each modeled cold trap to a depth of 6 m (the LCROSS impact

is thought to have excavated 6–10 m into Cabeus crater; Schultz et al. 2010; Luchsinger et al. 2021). Boxes

denote the first and third quartiles and whiskers denote the 99th percentile. Points denote outliers above

the 99th percentile value. At least 75% of runs predicted 0 m ice retention in the upper 6 m for all cold

traps except Faustini and de Gerlache.

4.5.2 Ice disruption in gardened layers

Our model predicted that most ice layers stored within polar cold traps would have been disrupted by

either impact gardening and/or ballistic sedimentation. We found that cold traps farther from the pole

were more likely to retain thicker ice deposits, due to the MoonPIES model treatment of ballistic transport

to the south polar region, wherein the majority of ballistically transported ice comes to rest in the first

cold trap encountered (Moores, 2016). We note that our model only tracks deposition of ice by primary

delivery processes and does not track the redeposition of ice that is lost from a particular cold trap, nor the

interchange of ice between our target cold traps and seasonal or micro cold traps (Kloos et al., 2019; Hayne

et al., 2021). Therefore, the gardened layers are conservative estimates of total ice storage. Secondary ice

mobility processes such as redeposition and thermal pumping (Schorghofer & Aharonson, 2014; Schorghofer

& Williams, 2020) could result in larger ice deposits than those modeled here, particularly in the case of

75



near-surface expression of ice deposits.

In the MoonPIES model, the expression of near-surface ice in a gardened regolith was primarily deter-

mined by the thickness of the final ejecta deposition event(s) or large quantities of ice delivered by impacts

near the end of a model run. The lack of surface ice observed follows from our treatment of impact garden-

ing, which typically removed more ice than the average deposition from all sources in any given timestep

post-Nectarian (Figure 4.6). Our Monte Carlo treatment is consistent with the analytical results of Costello

et al. (2021) who predicted that impact gardening would have removed all ice to a depth of 1 m since 1 Ga

or 3m since 3 Ga. The surface expressions of ice are almost entirely unconstrained by the MoonPIES model,

due to the sensitivity of surface expression to short term events within the most recent timesteps, as seen in

Figure 4.11. MoonPIES also does not consider redeposition of lost ice into neighboring cold traps, thermal

pumping, or other ice modification processes that may affect surface expression of ice, again contributing to

the inability of the MoonPIES model to predict surface expression.

The particular scenario where ice was retained at the surface in our model was when large icy impactors

delivered ice very recently, which could be linked to the large polar ice deposits at Mercury (Moses et al.,

1999). However, such a scenario is unlikely the case at the Moon due to the absence of massive ice deposits

at the surface or in the shallow subsurface (Li et al., 2018; Campbell et al., 2006; Neish et al., 2011). Instead,

surface ice is more likely the result of present-day production of ice by the solar wind on timescales shorter

than 10 Myr (Benna et al., 2019) or surface-subsurface exchange (e.g., through thermal pumping; Schorghofer

& Aharonson 2014) not modeled here. Our model is therefore most relevant for subsurface ice exploration

at depths of 3-10 m and greater.

4.5.3 The nature of buried ice below polar cold traps

Our model aggregates ice delivery to the south pole from solar wind, volcanic outgassing, and impact

delivery. Using published rates of solar wind deposition (Housley et al., 1973; Benna et al., 2019) and

volcanic outgassing (Needham & Kring, 2017), the ice deposition rate in all cold traps is many orders of

magnitude smaller than the impact gardening rate at any point in time (Figure 4.6). Therefore, our model

predicts that large buried ice deposits would be primarily sourced from impacts.

Impactors in this work included contributions from both asteroids and comets, an update from previous

work considering only asteroids (Cannon et al., 2020). We assumed a constant comet proportion of 5% as

a conservative estimate of typically reported values (5%–17%; Joy et al. 2012; Liu et al. 2015). At this

proportion, comet ice contributions were comparable to asteroid ice due to the greater ice concentration,

despite lower retention on average due to greater impact speeds (Ong et al., 2010). We also allowed basin
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impactors to be icy at the same rates as other impactors. On average, basins contributed about 2 m of ice

per basin-era timestep (1 m each from asteroidal and cometary basins; Figure C.4). However, as stochastic

events, many runs delivered no basin ice, while rare large basin impactors in other runs exceeded all other

ice sources. In addition, basin ice delivery events produced deep early ice layers which were more likely to be

retained over geologic time. Basin ice abundance and retention depended heavily on the sequence of basin

events, their impactor composition and randomly assigned speed. Improved constraints on the fraction of

cometary and asteroidal impactors over lunar history, as well as the ages and composition of basin impactors,

would dramatically improve our understanding of deep water ice deposits at the lunar poles.

4.5.4 Implications for lunar ice exploration

The MoonPIES model explores ice delivery, retention, and removal over geologic time scales. However,

human exploration occurs on human time scales, during which short term ice deposition and removal can

occur. These short term ice behaviors can lead to surface expressions of ice that are not captured by our

model. Additionally, the true ice distribution is the result of a long stochastic history that we can only

partially constrain, as illustrated by the variance in possible outcomes over 10,000 model runs (Figure 4.9).

In particular, the bimodal distributions caused by uncertainty in the precise sequencing in crater and basin

formation events indicate that precise sequencing of crater and basin ages is critical to the ability to precisely

model and predict the thickness of ancient ice deposits.

Our model predicts that the disruption of ice by impact gardening and ballistic sedimentation would

cause large coherent ice deposits at depth to be unlikely. We found that the gigaton deposits observed in

Cannon et al. (2020) would be rare and, if present, likely to be disturbed and present only in incoherent

layers. Therefore, well-defined contacts between lithic and icy layers are unlikely to be detected with radar,

consistent with inconclusive space-borne radar studies (Spudis et al., 1998; Campbell et al., 2006; Patterson

et al., 2017). If the LCROSS impactor excavated 10 m of material, it could have sampled a region that

MoonPIES predicts could be populated by ice; however, if it only excavated 6 m of material, it would have

sampled only the surface expression ice. Deposits beyond 6 m may have formed a layer of harder material

that prevented excavation, as suggested by Luchsinger et al. (2021). Additionally, ground-penetrating radar

(GPR) may present an opportunity to probe for ice layers beneath cold traps (Kring, 2007, 2020) with

deeper penetration depths than orbital radar. GPR may also allow thinner ice layers to be detected by using

higher frequencies than orbital radar. Although our predictions indicate that fully coherent thick ice layers

are rare, changes in dielectric properties or partially preserved layers of ice may be observable with ground

penetrating radar. While Faustini, Haworth, and Shoemaker retained similar quantities of ice as other cold
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traps over all depths (Figure 4.9), most ice was concentrated near the base of their columns (Figure 4.10).

The most valuable targets for radar assuming penetration depth of 100 m (Fa, 2013) would be Amundsen,

Cabeus, Cabeus B, and Idel’son L, which each retained >= 4 m of ice in the upper 100 m in half of model

runs (> 1 m in 95% of runs). Faustini, Haworth, Shoemaker, and de Gerlache may also be targets of interest,

retaining >= 1 m of ice in the upper 100 m in half of model runs (> 0.2 m in 95% of runs).

The Artemis exploration zone is centered on the lunar south pole, which lies on the rim of Shackleton

crater. Our model does not predict ice retention in Shackleton crater in the vast majority of model runs,

due to its relatively recent formation age and proximity to the south pole, consistent with orbital observa-

tions(Haruyama et al., 2008; Zuber et al., 2012). However, the absence of large subsurface ice layers in our

model does not preclude the discovery of ice near the surface of Shackleton crater. Ice redistribution or a

recent icy impactor could result in near-surface ice in the Shackleton cold trap. If a significant quantity of

ice was discovered at depth below Shackleton, it would suggest that our model underestimates subsurface

ice storage and could indicate that other cold traps may also store ice more efficiently than predicted here.

Future exploration of south polar cold traps would therefore provide crucial constraints on our understanding

of recent and historical ice delivery, as well as the potential for geologic deposits of ice at depth.

4.6 Conclusion

Understanding the location, quantity, and form of buried ice is critical for future mission planning. Impact

cratering is thought to be the main source of polar ice, while ejecta from impact craters may preserve ice

deposits over geologic time. However, impact crater ejecta could mix and volatilize ice through ballistic

sedimentation. We developed a thermal model to predict ice loss due to ballistic sedimentation. We applied

our findings to a Monte Carlo polar ice and stratigraphy model and determined that ballistic sedimentation

disrupts “gigaton” style deposits reported by Cannon et al. (2020). Ice deposits in out model had smaller

volume and layer sizes, particularly for older and deeper modeled ice layers.

We applied our model to cold trap regions within the Artemis exploration zone. We found that Amundsen,

Cabeus, Cabeus B, and Idel’son L craters retained the greatest quantities of ice potentially detectable with

ground penetrating radar. We found significant variance in model predictions for near-surface ice deposits,

indicating that shorter term processes dominate ice retention in the upper 10 m. Although our model is

inconclusive for surface level deposits, Faustini, de Gerlache, and Amundsen craters retained the greatest

quantities in the upper 6 m, and may be better targets for instruments with < 10 m depth sensitivity than

other cold traps in this study. Of the modeled cold traps, Shackleton was least likely to retain subsurface ice

due to its young formation age, proximity to the pole, and lack of preserving ejecta layers deposited after
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its formation. Model variance due to the precise sequencing of cold trap formation, ejecta deposition, and

ice delivery events will be constrained by dating samples returned by upcoming missions from the Artemis

program. We showed that basin ice and ejecta delivery play crucial roles in retention of ice at the lunar

south pole. Buried ice deposits beneath lunar polar cold traps have likely been exposed to reworking by

ballistic sedimentation, and are thinner and less extensive than previously reported.

4.7 Open Research

The MoonPIES Python package is open source and publicly available on GitHub (https://github.com/

cjtu/moonpies) for use under the MIT license. The version of the model used in this work (v1.0.0) is

installable at https://doi.org/10.5281/zenodo.7055800 (Tai Udovicic et al., 2022a). All data generated

in this work (Data Sets S1 to S7, Appendix C) are available at https://doi.org/10.5281/zenodo.7058818

(Tai Udovicic et al., 2022b)
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Chapter 5

Discussion & Conclusion

Over the three preceding chapters, I presented three investigations into the origin and distribution of water

on the Moon. Some of the key outstanding questions that I sought to answer were: How quickly is the

lunar surface altered due to space weathering? Does OH / H2O migrate across the lunar surface on daily

timescales? How much ice could be buried below permanently shadowed regions near the south pole? Taken

together in the context of recent developments in the study of lunar hydration, these investigations reveal

important constraints on the origin and behavior of water on the lunar surface. Here, I summarize my

findings and look ahead to the future lunar missions that will usher in a new era of understanding water on

the Moon and beyond.

In chapter 2, Manuscript I: New Constraints on the Lunar Optical Space Weathering Rate, I investigated

the rate of space weathering in the lunar highlands over the last 1 Ga. Since space weathering processes, in-

cluding solar wind irradiation and micrometeorite bombardment, have been shown to produce OH / H2O in

lunar regolith analogs, understanding the rate of space weathering over time is one component of understand-

ing the active production of water on the lunar surface (see §1.5). Although we lack a clear understanding

of exactly how the majority of the widespread lunar OH / H2O was produced and where it is stored in the

regolith, it has been hypothesized that water production can be a direct result of submicroscopic iron (smFe0)

formation (Housley et al., 1973). Therefore, understanding smFe0 formation rate may be a proxy for un-

derstanding OH / H2O formation. Through my analysis of the ejecta of Copernican lunar craters, I found

that smFe0 accumulates at a predictable rate in logarithmic time. This means that each unit increase of

smFe0 in the regolith takes about 10 times longer than the last. Although the exact formation mechanism of

smFe0 and whether it is related to OH / H2O formation is debated, the slowing rate of smFe0 accumulation

may be related to a slower rate of OH / H2O production in mature lunar soils. However, maps of the

widespread 3 µm feature do not show signs of OH / H2O depletion near fresh craters, unlike maps of smFe0.

This would indicate that OH / H2O abundance is native to the lunar regolith or that it saturates on much

shorter timescales than smFe0 (∼1 Ga). An endogenic source of the widespread OH / H2O signature was
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suggested by Chang’E 5 observations which showed that surface OH / H2O measurements predicted similar

abundances of OH as were found in apatite grains of returned samples (Liu et al., 2022). However, previous

studies of Apollo samples showed that OH content was related to solar wind implantation in agglutinitic

glass (Liu et al., 2012). Therefore, it appears that a combination of endogenic and exogenic OH / H2O is

present in the regolith, but which source (or relative combination of the two) produces the widespread OH

/ H2O signature is still unknown.

In a recently published paper which follows on from the publication of chapter 2 (Tai Udovicic et al.,

2021a), Jordan et al. (2022) developed a model which accounted for surface space weathering and mixing

by impact gardening. As a co-author on this work, I determined that nanophase and microphase iron are

well-correlated in their accumulation over time. Although chapter 2 suggested that the different rates of

accumulation of nanophase and microphase iron could indicate independent processes acting at each scale,

the correlation between the two and consideration of impact gardening argue in favor of a consistent set of

processes for both smFe0 sizes. The Jordan et al. (2022) model accounts for the depth of penetration of space

weathering and the timescale over which surface weathering products are mixed into the subsurface. The

best fit space weathering penetration depths exceeded the penetration depth of typical solar wind irradiation,

but were consistent with the penetration depths of micrometeorites. Also, the penetration depth derived

for nanophase iron was indistinguishable from that of microphase iron, indicating consistency between the

formation processes of each size of smFe0. These results suggest that micrometeorites must be central to the

formation of smFe0 at the rates determined in chapter 2. However, micrometeorites produce agglutinates

which have been shown to contain solar wind implanted OH (Liu et al., 2012), and it is still unclear if the

solar wind is a necessary precursor to produce the observed rates of smFe0 production (§1.5). More work is

needed to understand the relative contributions of the solar wind and micrometeorites to smFe0 and OH /

H2O production.

In chapter 3, Manuscript II: Roughness Reveals Persistent OH/H2O on the Moon from Equatorial to High

Latitudes, I investigated the widespread 3 µm OH / H2O absorption feature and its variability with latitude

and local time. To accurately interpret the OH / H2O 3 µm feature, I updated and validated a thermal

model that accounts for the roughness of the lunar surface. Using the roughness thermal model to correct

Moon Mineralogy Mapper (M3) spectra, I found that the 3 µm absorption feature was prominent regardless

of local time and latitude, in contrast to previous investigations that did not account for roughness (Clark

et al., 2011; Li & Milliken, 2017). This strong persistent OH / H2O signature indicates that hydroxyl or

water is present in all lunar regolith in detectable quantities, regardless of location and time of day. Since I

observed no significant variation in OH / H2O regardless of terrain composition, it would appear that either

the abundance of OH / H2O is close to uniform across the lunar surface or that the portion of the 3 µm
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signature resolvable in M3 data is saturated at typical lunar surface OH / H2O abundances. If the surface is

uniform in OH / H2O content, it is unlikely that endogenic water is the primary source since interior water

content would be expected to change as lunar magma evolved; the highlands, maria, and pyroclastic deposits

formed at different points in lunar magmatic history and would be unlikely to sequester the same quantity

of water/hydroxyl. Therefore, barring instrument saturation, the uniformity in OH / H2O feature would

suggest that it is a natural consequence of space weathering, independent of surface composition. This is

consistent with recent laboratory experiments which found that solar wind ion irradiation of lunar samples

introduces a strong and broad OH feature which dominates the 3 µm region (McLain et al., 2021). Since no

variation is observed in the 3 µm feature with surface age, a solar wind implanted source of OH / H2O must

quickly saturate to the uniform value observed across the surface. Although we cannot distinguish OH from

H2O at 3 µm, recent observations at 6 µm by the Stratospheric Observatory for Infrared Astronomy (SOFIA)

gave direct evidence of H2O (and not just OH) on the daylit lunar surface (Honniball et al., 2020). Consistent

with our 3 µm observations, the 6 µm feature does not show signs of diurnal variation, indicating it is likely

trapped in impact glasses or hydrated minerals (Honniball et al., 2022). Therefore, the widespread 3 µm

feature may be sensing the strongly-bound H2O observed by SOFIA. To unravel the relative contributions of

OH and H2O to the widespread 3 µm feature, we require observations that capture the full 3 µm absorption

feature with better spatial and thermal calibration. More in-situ infrared measurements from landers coupled

with sample return (e.g., Chang’E 5; Liu et al. 2022) will also be critical to ground-truth these remotely

observed signatures and correlate them with the measured abundances of OH / H2O in the regolith.

From the results of chapter 2 and chapter 3, it appears that the widespread OH / H2O on the Moon

is explainable by space weathering, or perhaps endogenic sources, and does not require any source of daily

migrating H2O. Surface OH / H2O that can survive the high temperatures and harsh space environment

throughout the lunar day is unlikely to be easily extracted from the regolith. Therefore, in chapter 4,

Manuscript III: Buried Ice Deposits in Lunar Polar Cold Traps were Disrupted by Ballistic Sedimentation, I

investigated possible water ice reservoirs below south polar permanently shadowed regions (PSRs). Previous

work suggested that large, relatively pure layers of water ice could be preserved below layers of ejecta from

nearby craters (Cannon et al., 2020; Kring, 2020). However, those studies did not account for the heating

and mixing (ballistic sedimentation) of buried ice as crater ejecta is deposited into a permanently shadowed

region (PSR). To address this gap, I developed a thermal model that estimates the quantity of ice lost

during a given ballistic sedimentation event. I also made several key updates to the previous ice and ejecta

stratigraphy model and investigated how much ballistic sedimentation would disturb buried ice layers. I

found that total ice retention fell when accounting for ballistic sedimentation, but that meters-thick layers

could still exist below several PSRs. Most of the remaining water ice layers were 10s to 100s of meters
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below the surface. Therefore, the model predicts that the majority of buried water ice occurs below the

depth of typical drill cores (∼1 m) and would require deeper subsurface probing methods to detect. In

addition to informing the potential depth of water ice layers, this investigation also made predictions about

the properties of ice we expect to find below the surface. We found that most ice layers were influenced by

ballistic sedimentation. Therefore, we infer that most large ice deposits have been mixed into the regolith

and are unlikely to remain as coherent layers. In addition, any water ice found near the surface, where our

model finds little to no ice, is more likely to have been produced in-situ by space weathering or delivered

very recently. Alternatively, ice layers may migrate to subsurface stability zones at depth through thermal

effects not accounted for in this model (Schorghofer & Aharonson, 2014). The ice predictions in this study

are valuable for ongoing mission planning efforts as the NASA Artemis program prepares to send robotic

and human missions to the south polar region. If these exploratory missions confirm that usable quantities

of water ice exist on or below PSRs, it could revolutionize the future of space exploration. Since H2O can be

readily synthesized into costly rocket propellant (Kornuta et al., 2019) lunar water could significantly lower

the cost of space travel throughout the Solar System. Through these three studies, I have unraveled part

of the complex tapestry of water interactions on the lunar surface. With many missions planned to further

characterize lunar OH / H2O in-situ and from orbit, the insights gained here will help plan and interpret

the coming deluge of data which promises to revolutionize our understanding of water on the Moon.

5.1 Conclusion

Through the three investigations presented here, I found evidence for a predictable space weathering rate, a

prominent widespread OH / H2O feature that survives the lunar day, and buried water ice layers near the

lunar south pole. The space weathering rates derived in chapter 2 may be useful for tracking the production

of OH / H2O, but more work is needed to determine the precise mechanism and source of smFe0 on the

Moon. Taken together with the observation in chapter 3 that OH / H2O is not diurnally migrating, it

appears that space weathering could be the primary source of the widespread water / hydroxyl signature.

However, since the widespread OH / H2O survives the harsh lunar day, it is probably tightly sequestered in

impact glasses or hydrated minerals. Therefore, the widespread OH / H2O is unlikely to be easily extracted

from the surface in usable quantities. In chapter 4, I searched for usable lunar water near the lunar south

pole, where permanently shadowed regions may contain water ice reservoirs. By improving a previous model

of polar ice stratigrphy, I predicted that large ancient ice deposits could be present 10s to 100s of meters

below the the surface. The investigations here contribute a few pieces to the puzzling origin and distribution

of water on the Moon. With an unprecedented number of remote and in-situ missions planned this decade
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to observe the widespread OH / H2O feature, and possibly sample water ice near the south pole, we are

presently on the cusp of a new chapter of understanding water on the Moon and beyond.

Several upcoming landed missions will investigate the in-situ space weathering and hydration environment

on the Moon. In particular, Lunar Vertex will land at the Reiner Gamma lunar swirl and will help characterize

the relative space weathering effects of solar wind and micrometeorite bombardment (Blewett et al., 2022).

The NIRVSS instrument has a hyperspectral near-infrared spectrometer which will search for variability in

the widespread OH / H2O feature from a lander in the Lacus Mortis mare region (Roush et al., 2020). The

L-CIRiS instrument will land near the south pole to characterize the thermal properties and OH / H2O

content of micro-cold traps (small areas capable of trapping water outside the large PSRs; Hayne et al.

2019). These missions will be complemented by a host of orbital and flyby spacecraft missions which will

characterize OH / H2O widespread on the lunar surface and in polar PSRs. Among these are a polar hydrogen

mapper, LunaH-Map (Hardgrove et al., 2020); a hyperspectral visible to near-infrared mapper, Lunar Ice

Cube (Malphrus et al., 2019); a hyperspectral near-infrared and multispectral mid-infrared mapper, Lunar

Trailblazer (Ehlmann et al., 2022); and a rover which will search for volatiles in PSRs, VIPER (Colaprete

et al., 2019). In addition, the NASA Artemis program intends to return humans to the lunar surface for the

first time since the end of the Apollo era five decades ago. Artemis plans to return the first samples from

the lunar south pole, which have the potential to revolutionize our understanding of water on the Moon.

These crewed and uncrewed missions promise to rapidly advance our understanding of lunar OH / H2O, its

endogenic and exogenic source(s), and its availability for use in future space exploration. At turning points

like these, it is critical to look forward and lay the groundwork upon which future breakthrough discoveries

will be built. Through the investigations presented here, I advanced our understanding of water on the Moon

in the spirit of open and collaborative science. As we begin a new generation of human space exploration, it

is crucial to prioritize ethical, sustainable, open and reproducible science now as a foundation for all future

generations to build upon.
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Acronyms

CC BY 4.0 Creative Commons Attribution 4.0

CLSE Center for Lunar Science and Exploration

CSV comma-separated values

DAPS Department of Astronomy and Planetary Science

DOI Digital Object Identifier

FINESST Future Investigators in NASA Earth and Space Science and Technology

GRL Geophysical Research Letters

ISRO Indian Space Research Organisation

JAXA Japan Aerospace Exploration Agency

LAMP Lyman Alpha Mapping Project

LCROSS Lunar Crater Observation and Sensing Satellite

LDAP Lunar Data Analysis Program

LPI Lunar and Planetary Institute

LRO Lunar Reconnaissance Orbiter

LROC Lunar Reconnaissance Orbiter Camera

M3 Moon Mineralogy Mapper

MI Multiband Imager

87



MIT Massachusetts Institute of Technology

MoonPIES Moon Polar Ice and Ejecta Stratigraphy

NASA National Aeronautics and Space Administration

NAU Northern Arizona University

OMAT Optical Maturity

PIXEL Planetary Instrumentation Experimentation and Exploration Laboratory

PSR permanently shadowed region

SELENE SELenological and ENgineering Explorer

smFe0 submicroscopic iron

SOFIA Stratospheric Observatory for Infrared Astronomy

SSERVI Solar System Exploration Research Virtual Institute

TOPS Transform to Open Science

USRA Universities Space Research Association

WAC Wide Angle Camera
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Appendix A

Supplementary Information for Chapter 2: Manuscript I

Supplementary material for chapter 2, Manuscript I: New Constraints on the Lunar Optical Space Weath-

ering Rate is listed here. It describes supplemental data sets available at https://doi.org/10.1029/

2020GL092198 that are required to reproduce each figure (Tai Udovicic et al., 2021a). Supplemental figures

describe the spatial distribution of the sampled craters and the sensitivity of the derived fits.

Data Set S1.

Data Set S1 is a comma separated values (csv) file of all craters used in the Global analysis and is

sufficient to reproduce Figure 2. Its columns are: Name, Latitude (Lat), Longitude (Lon), Radius, Mean,

Standard deviation and Size (number of valid pixels) of nanophase iron (mean npfe, std npfe, size npfe), and

microphase iron (mean mpfe, std mpfe, size mpfe), Dataset (ds), and Reference (Ref). Dataset is abbreviated

as a two letter code, corresponding to: Cold Spot (cs), OMAT young (oy), OMAT Intermediate (oi), OMAT

Old (oo), LPI Copernican (lc), LPI Eratosthenian (le), and LPI Imbrian (li). Refer to the Reference of each

crater for details about age determination and methodology.

Data Set S2.

Data Set S2 is a comma separated values (csv) file of all craters used in the Highlands analysis and is

sufficient to reproduce the data and fits in Figure 3 and Figure S1. Its columns are: Name, Latitude (Lat),

Longitude (Lon), Radius, Age, Lower Age error (Agelow), Upper Age error (Ageupp), Mean, Standard devi-

ation and Size (number of valid pixels) of nanophase iron (mean npfe, std npfe, size npfe), and microphase

iron (mean mpfe, std mpfe, size mpfe), Dataset (ds), and Reference (Ref). Dataset is abbreviated as a two

letter code, corresponding to: Cold Spot (cs), Chronology (ch), and Rock Abundance (ra). Refer to the

Reference of each crater for details about age determination and methodology.

Data Set S3.

Data Set S3 is a comma separated values (csv) file of the LPI Highlands Saturation range craters and

is sufficient to reproduce the saturation ranges shown on Figure 3 and Figure S1. Its columns are: Name,

Latitude (Lat), Longitude (Lon), Radius, Age, Mean, Standard deviation and Size (number of valid pixels)
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of nanophase iron (mean npfe, std npfe, size npfe), and microphase iron (mean mpfe, std mpfe, size mpfe),

Dataset (ds), and Reference (Ref) for each crater used to produce the highlands saturation ranged in Fig.

3. Dataset is set to “hlsat” for “LPI Highlands Saturation”. Refer to the Reference of each crater for details

about age determination and methodology.
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Figure A.1: Distribution of dated highlands craters in our sample shown on the Lunar Reconnaissance

Orbiter (LRO) Wide Angle Camera (WAC) mosaic (Speyerer et al., 2011). Stacked histograms show the

number of cold spot, chronology, and rocky highlands craters in each 20o longitude bin (top) and each 15o

latitude bin (right).
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Figure A.2: Linear-linear axis plots of fits in Fig. 3. a Power law fits in Fig. 3a shown on linear axes. b

Logarithmic fits in Fig. 3b shown on linear axes.
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Figure A.3: We test the influence of ejecta anomalies on the mean annular nanophase and microphase iron

of four craters. We find that digitizing asymmetric ejecta and excluding small superposed craters may reduce

the mean and standard error nanophase iron of smaller craters in our sample. Digitizing ejecta anomalies of

larger craters appears to have negligible effects.
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Figure A.4: We test the influence of craters with asymmetric ejecta on our logarithmic fits (Fig. 3b). We

plot in purple the 7/75 asymmetric ejecta craters in our highlands sample (9%); 0 are chronology craters,

2/12 are cold spot craters (17%), and 5/75 are rock abundance craters (9%). We note that nanophase and

microphase iron of asymmetric ejecta craters systematically plot above our fits, consistent with the ejecta

annulus incorporating mature background material in these cases. Despite being systematically enhanced,

the overall effect of removing these points is negligible and the new fits are well within the 95% confidence

intervals of the presented in Fig. 3b.
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Figure A.5: Studentized residuals of the linear-logarithmic fits (Fig. 3b) with longitude, latitude, crater

radius, and age. We observe no systematic bias in the residuals of our fit with location, crater size, or age.
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Appendix B

Supplementary Information for Chapter 3: Manuscript II

Supplementary material for chapter 3, Manuscript II: Roughness Reveals Persistent OH/H2O on the Moon

from Equatorial to High Latitudes is listed here. It includes a table of model parameters used in the KRC

thermal model to produce diurnal temperatures of surface facets in a variety of orientations and local

conditions described in §3.3.

97



Table B.1: Model parameters used to run surface temperature predictions in KRC. Case-sensitive param-

eter names correspond to the named parameters in the Davinci KRC interface (https://krc.mars.asu.edu/).

Parameter Value Description

Lookup
Variables

lat -85°–85° Latitude (35 bins in 5° increments)
ALBEDO 0.05–0.225 Bolometric albedo (6 bins in 0.035 increments)
SLOPE 0°–90° Surface slope (19 bins in 5° increments)
SLOAZI 0°–360° Surface azimuth (19 bins in 20° increments)
DELLS 4° Ls step size (90 bins spanning 0°–360°)

Thermal
Parameters

EMISS 0.96 Emissivity
thick 0.05 Upper layer thickness [m]
DENSITY 1100 Upper layer density [kg/m3]
DENS2 1800 Lower layer density [kg/m3]
lbound 18 Interior heat flow [mW/m2]

PhotoFunc 0.045/albedo
Photometric function (Keihm-style with
Vasavada et al. (2012) scaling, relative to
0.045 albedo)

Temperature-
dependent
parameters

SphUp0/SphLo0 602.88098583
Specific heat capacity (Hayne et al., 2017)
expressed as 4th-order polynomial
(c0 + c1 · T+ c2 · T2 + c3 · T3)

SphUp1/SphLo1 235.98988249
SphUp2/SphLo2 -29.59742178
SphUp3/SphLo3 -3.78707193

ConUp0 0.00133644
Upper layer conductivity (Feng et al., 2020)
expressed as 4th-order polynomial
(c0 + c1 · T+ c2 · T2 + c3 · T3)

ConUp1 0.00073150
ConUp2 0.00033250
ConUp3 0.00005038

ConLo0 0.00634807
Lower layer conductivity (Feng et al., 2020)
expressed as 4th-order polynomial
(c0 + c1 · T+ c2 · T2 + c3 · T3)

ConLo1 0.00347464
ConLo2 0.00157938
ConLo3 0.00023930

Model Setup
Parameters

body Moon Target body
k style Moon Conductivity style (Moon for airless bodies)
LKofT T Temperature-dependent conductivity
FLAY 0.01 First layer thickness [m]
RLAY 1.3 Layer thickness multiplier
N1 26 Number of layers
N24 288 Timesteps per day (5 min steps)
DJUL 0 Start date
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Appendix C

Supplementary Information for Chapter 4: Manuscript III

Supplementary material for chapter 4, Manuscript III: Buried Ice Deposits in Lunar Polar Cold Traps were

Disrupted by Ballistic Sedimentation is listed here. It contains descriptions of supplementary datasets S1

to S7 (ds01.csv to ds07.csv) needed to reproduce figures in chapter 4 (Tai Udovicic et al., 2022b). Supple-

mental figures describe additional parameters and sensitivity of the Moon Polar Ice and Ejecta Stratigra-

phy (MoonPIES) model. Python code that generated each figure is available in the moonpies repository on

GitHub at https://github.com/cjtu/moonpies (Tai Udovicic et al., 2022a).

Data Sets S1 and S2.

The comma-separated values (CSV) files, “ds01.csv” and “ds02.csv” contain modeled craters and basins,

respectively, in tabular format with columns for their name, latitude (degrees), longitude (degrees), diameter

(km), age (Ga), lower and upper age uncertainties (Ga) and references. Data Set S1 has additional columns

for the PSR centroid latitude (degrees), longitude (degrees), and total PSR area (km2) for craters hosting

a permanently shadowed region (PSR). Unnamed craters follow the numbering scheme of Cannon et al.

(2020). Data Set S2 has three options for basin diameter: main ring, inner ring, and Bouguer (Neumann

et al., 2015). Main ring diameter is used for this work.

Data Set S3 and S4.

CSV files, “ds03.csv” contains the mean melt fraction and “ds04.csv” contains the standard deviation

melt fraction derived using the ballistic sedimentation thermal model developed in this work. The first row

defines ejecta temperatures and the first column defines mixing ratios (target:ejecta). These data are shown

in Figure 4. See §2.3.3 for methodology.

Data Set S5.

CSV file, “ds05.csv” contains the ballistic hop efficiency used to compute ice delivery to each modeled

coldtrap, expressed as a percentage of total ice delivered to the south polar region. These data are displayed

in Figure S1.

Data Set S6.
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CSV file, “ds06.csv” contains aggregated data resulting from 10,000 MoonPIES Monte Carlo runs which

was used to produce Figures 9 and 11. Columns are multi-indexed by cold trap name, whether ballistic

sedimentation was applied (bsed, no bsed) and the total thickness of ice layers to depths of 6 m, 10 m, 100

m ice, and total as well as the total depth of the column for all generated stratigraphy columns from all

10,000 runs.

Data Set S7.

CSV file, “ds07.csv” contains aggregated layering data resulting from 10,000 MoonPIES Monte Carlo

runs which was used to produce Figure 10. Columns are multi-indexed by cold trap name, whether ballistic

sedimentation was applied (bsed, no bsed) and the ice, depth, and time of formation of each non-zero layer

from all generated stratigraphy columns from all 10,000 runs.
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Moores (2016) and orange squares are those derived here. The average value used in Cannon et al. (2020) is

shown in gray.
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Figure C.2: Comet velocities drawn from bimodal distribution approximating speeds and relative abun-

dances of Jupiter Family Comets and Oort Cloud Comets (Ong et al., 2010).
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model is insensitive to to the fit at high velocity since high velocity impacts are rare in the model (see Figure

C.2) and these velocities correspond to smaller impactors which deliver less ice. Asteroid retention is capped

at 50% for consistency with the previous model by Cannon et al. (2020) while comets never have less than

10 km/s.
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